Effect of barren plateaus on gradient-free optimization

被引:112
作者
Arrasmith, Andrew [1 ]
Cerezo, M. [1 ,2 ]
Czarnik, Piotr [1 ]
Cincio, Lukasz [1 ]
Coles, Patrick J. [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA
来源
QUANTUM | 2021年 / 5卷
关键词
RANDOM QUANTUM CIRCUITS;
D O I
10.22331/q-2021-10-05-558
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Barren plateau landscapes correspond to gradients that vanish exponentially in the number of qubits. Such landscapes have been demonstrated for variational quantum algorithms and quantum neural networks with deep circuits, global cost functions, large entanglement, or hardware noise. For obvious reasons, it is expected that gradient-based optimizers will be significantly affected by barren plateaus. However, whether or not gradient-free optimizers are impacted is a topic of debate, with some arguing that gradient-free approaches are unaffected by barren plateaus. Here we show that, indeed, gradient-free optimizers do not solve the barren plateau problem. Our main result proves that cost function differences, which are the basis for making decisions in a gradient-free optimization, are exponentially suppressed in a barren plateau. Hence, without exponential precision, gradient-free optimizers will not make progress in the optimization. We numerically confirm this by training a parameterized quantum circuit in a barren plateau landscape with several gradient free optimizers (Nelder-Mead, Powell, and COBYLA algorithms), and show that the number of shots required in the optimization grows exponentially with the number of qubits. These results provide new insight into the training landscapes of quantum neural networks and will inform the development of strategies to mitigate or avoid barren plateaus.
引用
收藏
页数:12
相关论文
共 55 条
  • [1] The power of quantum neural networks
    Abbas, Amira
    Sutter, David
    Zoufal, Christa
    Lucchi, Aurelien
    Figalli, Alessio
    Woerner, Stefan
    [J]. NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06): : 403 - 409
  • [2] Natural evolutionary strategies for variational quantum computation
    Anand A.
    Degroote M.
    Aspuru-Guzik A.
    [J]. Machine Learning: Science and Technology, 2021, 2 (04):
  • [3] Arrasmith A, 2020, Effect of barren plateaus on gradient-free optimization
  • [4] Variational consistent histories as a hybrid algorithm for quantum foundations
    Arrasmith, Andrew
    Cincio, Lukasz
    Sornborger, Andrew T.
    Zurek, Wojciech H.
    Coles, Patrick J.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] BARTON RR, 1991, 1991 WINTER SIMULATION CONFERENCE PROCEEDINGS, P945, DOI 10.1109/WSC.1991.185709
  • [6] Training deep quantum neural networks
    Beer, Kerstin
    Bondarenko, Dmytro
    Farrelly, Terry
    Osborne, Tobias J.
    Salzmann, Robert
    Scheiermann, Daniel
    Wolf, Ramona
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [7] Bharti K., 2021, ARXIV PREPRINT ARXIV
  • [8] Local Random Quantum Circuits are Approximate Polynomial-Designs
    Brandao, Fernando G. S. L.
    Harrow, Aram W.
    Horodecki, Michal
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (02) : 397 - 434
  • [9] Bravo-Prieto Carlos, 2019, ARXIV PREPRINT ARXIV, V65
  • [10] Brent R. P., 2013, ALGORITHMS MINIMIZAT