Effect of barren plateaus on gradient-free optimization

被引:131
作者
Arrasmith, Andrew [1 ]
Cerezo, M. [1 ,2 ]
Czarnik, Piotr [1 ]
Cincio, Lukasz [1 ]
Coles, Patrick J. [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA
来源
QUANTUM | 2021年 / 5卷
关键词
RANDOM QUANTUM CIRCUITS;
D O I
10.22331/q-2021-10-05-558
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Barren plateau landscapes correspond to gradients that vanish exponentially in the number of qubits. Such landscapes have been demonstrated for variational quantum algorithms and quantum neural networks with deep circuits, global cost functions, large entanglement, or hardware noise. For obvious reasons, it is expected that gradient-based optimizers will be significantly affected by barren plateaus. However, whether or not gradient-free optimizers are impacted is a topic of debate, with some arguing that gradient-free approaches are unaffected by barren plateaus. Here we show that, indeed, gradient-free optimizers do not solve the barren plateau problem. Our main result proves that cost function differences, which are the basis for making decisions in a gradient-free optimization, are exponentially suppressed in a barren plateau. Hence, without exponential precision, gradient-free optimizers will not make progress in the optimization. We numerically confirm this by training a parameterized quantum circuit in a barren plateau landscape with several gradient free optimizers (Nelder-Mead, Powell, and COBYLA algorithms), and show that the number of shots required in the optimization grows exponentially with the number of qubits. These results provide new insight into the training landscapes of quantum neural networks and will inform the development of strategies to mitigate or avoid barren plateaus.
引用
收藏
页数:12
相关论文
共 55 条
[1]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[2]   Natural evolutionary strategies for variational quantum computation [J].
Anand A. ;
Degroote M. ;
Aspuru-Guzik A. .
Machine Learning: Science and Technology, 2021, 2 (04)
[3]  
Arrasmith A., 2021, ARXIV PREPRINT ARXIV
[4]  
Arrasmith A., 2020, Effect of barren plateaus on gradient-free optimization
[5]   Variational consistent histories as a hybrid algorithm for quantum foundations [J].
Arrasmith, Andrew ;
Cincio, Lukasz ;
Sornborger, Andrew T. ;
Zurek, Wojciech H. ;
Coles, Patrick J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]  
BARTON RR, 1991, 1991 WINTER SIMULATION CONFERENCE PROCEEDINGS, P945, DOI 10.1109/WSC.1991.185709
[7]   Training deep quantum neural networks [J].
Beer, Kerstin ;
Bondarenko, Dmytro ;
Farrelly, Terry ;
Osborne, Tobias J. ;
Salzmann, Robert ;
Scheiermann, Daniel ;
Wolf, Ramona .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]  
Bharti Kishor, 2021, ARXIV PREPRINT ARXIV
[9]   Local Random Quantum Circuits are Approximate Polynomial-Designs [J].
Brandao, Fernando G. S. L. ;
Harrow, Aram W. ;
Horodecki, Michal .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (02) :397-434
[10]  
Bravo-Prieto C., 2019, ARXIV190905820, V1909