Medical image segmentation automatic quality control: A multi-dimensional approach

被引:26
作者
Fournel, Joris [2 ,3 ]
Bartoli, Axel [1 ]
Bendahan, David [2 ]
Guye, Maxime [2 ]
Bernard, Monique [2 ]
Rauseo, Elisa [4 ,5 ]
Khanji, Mohammed Y. [4 ,5 ,6 ]
Petersen, Steffen E. [4 ,5 ,7 ,8 ]
Jacquier, Alexis [1 ]
Ghattas, Badih [3 ]
机构
[1] Hop Timone Adultes, AP HM, Dept Radiol, 264 Rue St Pierre, F-13385 Marseille 05, France
[2] Aix Marseille Univ, Med Fac, CRMBM, CNRS, 27 Blvd Jean Moulin, F-13385 Marseille 05, France
[3] Aix Marseille Univ, I2M, CNRS, Marseille, France
[4] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, Charterhouse Sq, London EC1M 6BQ, England
[5] Barts Hlth NHS Trust, St Bartholomews Hosp, Barts Heart Ctr, London EC1A 7BE, England
[6] Barts Hlth NHS Trust, Dept Cardiol, Newham Univ Hosp, Glen Rd, London E13 8SL, England
[7] Hlth Data Res UK, London, England
[8] Alan Turing Inst, London, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Medical image segmentation automatic; quality control; Multi-dimensional quality control; CMR Image segmentation; Deep learning; DIAGNOSIS;
D O I
10.1016/j.media.2021.102213
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In clinical applications, using erroneous segmentations of medical images can have dramatic consequences. Current approaches dedicated to medical image segmentation automatic quality control do not predict segmentation quality at slice-level (2D), resulting in sub-optimal evaluations. Our 2D-based deep learning method simultaneously performs quality control at 2D-level and 3D-level for cardiovascular MR image segmentations. We compared it with 3D approaches by training both on 36,540 (2D) / 3842 (3D) samples to predict Dice Similarity Coefficients (DSC) for 4 different structures from the left ventricle, i.e., trabeculations (LVT), myocardium (LVM), papillary muscles (LVPM) and blood (LVC). The 2D-based method outperformed the 3D method. At the 2D-level, the mean absolute errors (MAEs) of the DSC predictions for 3823 samples, were 0.02, 0.02, 0.05 and 0.02 for LVM, LVC, LVT and LVPM, respectively. At the 3D-level, for 402 samples, the corresponding MAEs were 0.02, 0.01, 0.02 and 0.04. The method was validated in a clinical practice evaluation against semi-qualitative scores provided by expert cardiologists for 1016 subjects of the UK BioBank. Finally, we provided evidence that a multi-level QC could be used to enhance clinical measurements derived from image segmentations. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 16 条
[1]   Automatic initialization and quality control of large-scale cardiac MRI segmentations [J].
Alba, Xenia ;
Lekadir, Karim ;
Pereanez, Marco ;
Medrano-Gracia, Pau ;
Young, Alistair A. ;
Frangi, Alejandro F. .
MEDICAL IMAGE ANALYSIS, 2018, 43 :129-141
[2]   Unsupervised Quality Control of Image Segmentation Based on Bayesian Learning [J].
Audelan, Benoit ;
Delingette, Herve .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :21-29
[3]  
Bartoli A., 2020, RADIOL-ARTIF INTELL
[4]   An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Pollefeys, Marc ;
Konukoglu, Ender .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :111-119
[5]   Distribution of left ventricular trabeculation across age and gender in 140 healthy Caucasian subjects on MR imaging [J].
Bentatou, Z. ;
Finas, M. ;
Habert, P. ;
Kober, F. ;
Guye, M. ;
Bricq, S. ;
Lalande, A. ;
Frandon, J. ;
Dacher, J. N. ;
Dubourg, B. ;
Habib, G. ;
Caudron, J. ;
Normant, S. ;
Rapacchi, S. ;
Bernard, M. ;
Jacquier, A. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2018, 99 (11) :689-698
[6]   Semiautomatic Detection of Myocardial Contours in Order to Investigate Normal Values of the Left Ventricular Trabeculated Mass Using MRI [J].
Bricq, Stephanie ;
Frandon, Julien ;
Bernard, Monique ;
Guye, Maxime ;
Finas, Mathieu ;
Marcadet, Laetitia ;
Miquerol, Lucile ;
Kober, Frank ;
Habib, Gilbert ;
Fagret, Daniel ;
Jacquier, Alexis ;
Lalande, Alain .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (06) :1398-1406
[7]   2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC) [J].
Elliott, Perry M. ;
Anastasakis, Aris ;
Borger, Michael A. ;
Borggrefe, Martin ;
Cecchi, Franco ;
Charron, Philippe ;
Hagege, Albert Alain ;
Lafont, Antoine ;
Limongelli, Giuseppe ;
Mahrholdt, Heiko ;
McKenna, William J. ;
Mogensen, Jens ;
Nihoyannopoulos, Petros ;
Nistri, Stefano ;
Pieper, Petronella G. ;
Pieske, Burkert ;
Rapezzi, Claudio ;
Rutten, Frans H. ;
Tillmanns, Christoph ;
Watkins, Hugh .
EUROPEAN HEART JOURNAL, 2014, 35 (39) :2733-+
[8]   Semi-automatic detection of myocardial trabeculation using cardiovascular magnetic resonance: correlation with histology and reproducibility in a mouse model of non-compaction [J].
Frandon, Julien ;
Bricq, Stephanie ;
Bentatou, Zakarya ;
Marcadet, Laetitia ;
Barral, Pierre Antoine ;
Finas, Mathieu ;
Fagret, Daniel ;
Kober, Frank ;
Habib, Gilbert ;
Bernard, Monique ;
Lalande, Alain ;
Miquerol, Lucile ;
Jacquier, Alexis .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   The Diagnosis and Evaluation of Dilated Cardiomyopathy [J].
Japp, Alan G. ;
Gulati, Ankur ;
Cook, Stuart A. ;
Cowie, Martin R. ;
Prasad, Sanjay K. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2016, 67 (25) :2996-3010