Optimising Business Process Discovery Using Answer Set Programming

被引:3
作者
Chesani, Federico [1 ]
Di Francescomarino, Chiara [2 ]
Ghidini, Chiara [2 ]
Grundler, Giulia [1 ]
Loreti, Daniela [1 ]
Maggi, Fabrizio Maria [3 ]
Mello, Paola [1 ]
Montali, Marco [3 ]
Tessaris, Sergio [3 ]
机构
[1] DISI Univ Bologna, Bologna, Italy
[2] Fdn Bruno Kessler, Trento, Italy
[3] Free Univ Bozen Bolzano, Bolzano, Italy
来源
LOGIC PROGRAMMING AND NONMONOTONIC REASONING, LPNMR 2022 | 2022年 / 13416卷
关键词
Preferences; Answer set programming; Optimisation; Process mining; Process discovery; Declarative process models;
D O I
10.1007/978-3-031-15707-3_38
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Declarative business process discovery aims at identifying sets of constraints, from a given formal language, that characterise a workflow by using pre-recorded activity logs. Since the provided logs represent a fraction of all the consistent evolution of a process, and the fact that many sets of constraints covering those examples can be selected, empirical criteria should be employed to identify the "best" candidates. In our work we frame the process discovery as an optimisation problem, where we want to identify optimal sets of constraints according to preference criteria. Declarative constraints for processes are usually characterised via temporal logics, so different solutions can be semantically equivalent. For this reason, it is difficult to use an arbitrary finite domain constraints solvers for the optimisation. The use of Answer Set Programming enables the combination of deduction rules within the optimisation algorithm, in order to take into account not only the user preferences but also the implicit semantics of the formal language. In this paper we show how we encoded the process discovery problem using the ASPrin framework for qualitative and quantitative optimisation in ASP, and the results of our experiments.
引用
收藏
页码:498 / 504
页数:7
相关论文
共 13 条
[1]  
Brewka G, 2015, AAAI CONF ARTIF INTE, P1467
[2]  
Chesani F., 2021, arXiv
[3]   Incorporating negative information to process discovery of complex systems [J].
de Leon, Hernan Ponce ;
Nardelli, Lucio ;
Carmona, Josep ;
vanden Broucke, Seppe K. L. M. .
INFORMATION SCIENCES, 2018, 422 :480-496
[4]   Resolving inconsistencies and redundancies in declarative process models [J].
Di Ciccio, Claudio ;
Maggi, Fabrizio Maria ;
Montali, Marco ;
Mendling, Jan .
INFORMATION SYSTEMS, 2017, 64 :425-446
[5]  
Fagin Ronald, 2009, Encyclopedia of Database Systems, P3201, DOI [10.1007/978-0-387-39940-91274, DOI 10.1007/978-0-387-39940-91274]
[6]  
Fahland D, 2009, LECT NOTES BUS INF P, V29, P353
[7]   Multi-shot ASP solving with clingo [J].
Gebser, Martin ;
Kaminski, Roland ;
Kaufmann, Benjamin ;
Schaub, Torsten .
THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2019, 19 (01) :27-82
[8]  
Goedertier S, 2009, J MACH LEARN RES, V10, P1305
[9]   The DLV system for knowledge representation and reasoning [J].
Leone, Nicola ;
Pfeifer, Gerald ;
Faber, Wolfgang ;
Eiter, Thomas ;
Gottlob, Georg ;
Perri, Simona ;
Scarcello, Francesco .
ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2006, 7 (03) :499-562
[10]   DECLARE: Full support for loosely-structured processes [J].
Pesic, Maja ;
Schonenberg, Helen ;
van der Aalst, Wil M. P. .
11TH IEEE INTERNATIONAL ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE, PROCEEDINGS, 2007, :287-+