Implementation of Generalized Regression Neural Network (GRNN) for Solar Panel Power Estimation

被引:0
|
作者
Juan, Ronnie O. Serfa [1 ]
Kim, Jeha [1 ]
机构
[1] Cheongju Univ, Solar & Energy Engn Dept, Cheongju, South Korea
关键词
generalized regression neural network; photovoltaic module; power estimation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An efficient algorithm to characterize the current-voltage (IV) curve of photovoltaic (PV) modules under different operating conditions is necessary for solar power estimation and some operational stability. In this paper, the developed algorithm utilizes a generalized regression neural network (GRNN) as a power estimator for solar panels. The proposed model uses the seven input variables namely, the IV characteristic curve, weather condition, and temperature parameters from the testbed solar panel modules of Cheongju University dated August 2019 to July 2020. The dataset is divided into three sections as training, validation, and testing set to 60%, 20%, and 20 %, respectively. The simulation provides comparative results for the actual and predicted power. Moreover, GRNN shows a better predicted power output compared to a feed-forward neural network (FFNN). The regression value results in a much nearer to 1 that fits the dataset. The correlation coefficient is 0.9961 which identifies the provided dataset is on the line of best fit.
引用
收藏
页码:294 / 299
页数:6
相关论文
共 50 条
  • [1] MECHANICAL PROPERTIES PREDICTION OF HEAVYWEIGHT CONCRETE USING GENERALIZED REGRESSION NEURAL NETWORK (GRNN)
    Tosee, Seyed Vahid Razavi
    Faridmehr, Iman
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2022, 52 (03): : 303 - 310
  • [2] Using generalized regression neural network (GRNN) for mechanical strength prediction of lightweight mortar
    Razavi, S. V.
    Jumaat, M. Z.
    Ahmed, E. S. H.
    Mohammadi, P.
    COMPUTERS AND CONCRETE, 2012, 10 (04): : 379 - 390
  • [3] GENERALIZED REGRESSION NEURAL NETWORK FOR SOFTWARE DEFECT ESTIMATION
    Rao, Sankara
    Kumar, ReddiKiran
    IIOAB JOURNAL, 2016, 7 (09) : 340 - 356
  • [4] Initial assessment of generalized regression neural networks (GRNN) in QSAR
    Gobburu, JVS
    Shelver, WH
    Chen, EP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 4 - MEDI
  • [5] Applying Wavelets to Predict Solar PV Output Power Using Generalized Regression Neural Network
    Mandal, Paras
    Ul Haque, Ashraf
    Madhira, Surya T. S.
    Al-Hakeem, Donna I.
    2013 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2013,
  • [6] Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters
    Sridharan M.
    Annals of Data Science, 2023, 10 (04) : 1107 - 1125
  • [7] Use of Wavelet Transform and Generalized Regression Neural Network (GRNN) to the Characterization of Short-Duration Voltage Variation in Electric Power System
    Machado, R. N. D. M.
    Bezerra, U. H.
    Pelaes, E. G.
    Oliveira, R. C. L. D.
    Tostes, M. E. D. L.
    IEEE LATIN AMERICA TRANSACTIONS, 2009, 7 (02) : 217 - 222
  • [8] A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study
    Lotfinejad, Mohammad Mehdi
    Hafezi, Reza
    Khanali, Majid
    Hosseini, Seyed Sina
    Mehrpooya, Mehdi
    Shamshirband, Shahaboddin
    ENERGIES, 2018, 11 (05)
  • [9] X-Ray Imaging and General Regression Neural Network (GRNN) for Estimation of Silk Content in Cocoons
    Bej, Gopinath
    Akuli, Amitava
    Pal, Abhra
    Dey, Tamal
    Chaudhuri, Arkarag
    Alam, Shamshad
    Khandai, Rajendra
    Bhattacharyya, Nabarun
    PERCEPTION AND MACHINE INTELLIGENCE, 2015, 2015, : 71 - 76
  • [10] Neural Network Estimation of Microgrid Maximum Solar Power
    Chatterjee, Abir
    Keyhani, Ali
    IEEE TRANSACTIONS ON SMART GRID, 2012, 3 (04) : 1860 - 1866