DNA sequencing using polymerase substrate-binding kinetics

被引:12
作者
Previte, Michael John Robert [1 ]
Zhou, Chunhong [2 ]
Kellinger, Matthew [1 ]
Pantoja, Rigo [1 ]
Chen, Cheng-Yao [1 ]
Shi, Jin [1 ]
Wang, BeiBei [1 ]
Kia, Amirali [1 ]
Etchin, Sergey [2 ]
Vieceli, John [3 ]
Nikoomanzar, Ali [1 ]
Bomati, Erin [1 ]
Gloeckner, Christian [1 ]
Ronaghi, Mostafa [1 ]
He, Molly Min [1 ]
机构
[1] Illumina Inc, Prot Engn, San Diego, CA 92122 USA
[2] Illumina Inc, Engn, San Diego, CA 92122 USA
[3] Illumina Inc, Bioinformat, San Diego, CA 92122 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
LABEL-FREE DETECTION; SINGLE-MOLECULE; PROTEIN; EVOLUTION; EXPANSION; REPEATS; MODE;
D O I
10.1038/ncomms6936
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Electronic Control of DNA Polymerase Binding and Unbinding to Single DNA Molecules
    Wilson, Noah A.
    Abu-Shumays, Robin
    Gyarfas, Brett
    Wang, Hongyun
    Lieberman, Kate R.
    Akeson, Mark
    Dunbar, William B.
    ACS NANO, 2009, 3 (04) : 995 - 1003
  • [22] Measuring and Modeling the Kinetics of Individual DNA-DNA Polymerase Complexes on a Nanopore
    Wang, Hongyun
    Hurt, Nicholas
    Dunbar, William B.
    ACS NANO, 2013, 7 (05) : 3876 - 3886
  • [23] Bacteroides thetaiotaomicron generates diverse α-mannosidase activities through subtle evolution of a distal substrate-binding motif
    Thompson, Andrew J.
    Spears, Richard J.
    Zhu, Yanping
    Suits, Michael D. L.
    Williams, Spencer J.
    Gilbert, Harry J.
    Davies, Gideon J.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2018, 74 : 394 - 404
  • [24] Characterization of the hydrophobic substrate-binding site of the bacterial beta class glutathione transferase from Proteus mirabilis
    Federici, Luca
    Masulli, Michele
    Di Ilio, Carmine
    Allocati, Nerino
    PROTEIN ENGINEERING DESIGN & SELECTION, 2010, 23 (09) : 743 - 750
  • [25] The first crystal structure of human RNase 6 reveals a novel substrate-binding and cleavage site arrangement
    Prats-Ejarque, Guillem
    Arranz-Trullen, Javier
    Blanco, Jose A.
    Pulido, David
    Victoria Nogues, M.
    Moussaoui, Mohammed
    Boix, Ester
    BIOCHEMICAL JOURNAL, 2016, 473 : 1523 - 1536
  • [26] Substrate-binding destabilizes the hydrophobic cluster to relieve the autoinhibition of bacterial ubiquitin ligase IpaH9.8
    Ye, Yuxin
    Xiong, Yuxian
    Huang, Hao
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [27] A gene whose major transcript encodes only the substrate-binding domain of a protein-tyrosine kinase
    Kroiher, M
    Reidling, JC
    Steele, RE
    GENE, 2000, 241 (02) : 317 - 324
  • [28] Mutation Analysis of Violaxanthin De-epoxidase Identifies Substrate-binding Sites and Residues Involved in Catalysis
    Saga, Giorgia
    Giorgetti, Alejandro
    Fufezan, Christian
    Giacometti, Giorgio M.
    Bassi, Roberto
    Morosinotto, Tomas
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (31) : 23763 - 23778
  • [29] Real-Time DNA Sequencing from Single Polymerase Molecules
    Eid, John
    Fehr, Adrian
    Gray, Jeremy
    Luong, Khai
    Lyle, John
    Otto, Geoff
    Peluso, Paul
    Rank, David
    Baybayan, Primo
    Bettman, Brad
    Bibillo, Arkadiusz
    Bjornson, Keith
    Chaudhuri, Bidhan
    Christians, Frederick
    Cicero, Ronald
    Clark, Sonya
    Dalal, Ravindra
    deWinter, Alex
    Dixon, John
    Foquet, Mathieu
    Gaertner, Alfred
    Hardenbol, Paul
    Heiner, Cheryl
    Hester, Kevin
    Holden, David
    Kearns, Gregory
    Kong, Xiangxu
    Kuse, Ronald
    Lacroix, Yves
    Lin, Steven
    Lundquist, Paul
    Ma, Congcong
    Marks, Patrick
    Maxham, Mark
    Murphy, Devon
    Park, Insil
    Pham, Thang
    Phillips, Michael
    Roy, Joy
    Sebra, Robert
    Shen, Gene
    Sorenson, Jon
    Tomaney, Austin
    Travers, Kevin
    Trulson, Mark
    Vieceli, John
    Wegener, Jeffrey
    Wu, Dawn
    Yang, Alicia
    Zaccarin, Denis
    SCIENCE, 2009, 323 (5910) : 133 - 138
  • [30] REAL-TIME DNA SEQUENCING FROM SINGLE POLYMERASE MOLECULES
    Korlach, Jonas
    Bjornson, Keith P.
    Chaudhuri, Bidhan P.
    Cicero, Ronald L.
    Flusberg, Benjamin A.
    Gray, Jeremy J.
    Holden, David
    Saxena, Ravi
    Wegener, Jeffrey
    Turner, Stephen W.
    METHODS IN ENZYMOLOGY, VOL 472: SINGLE MOLECULE TOOLS, PT A: FLUORESCENCE BASED APPROACHES, 2010, 472 : 431 - 455