Variability of the western Pacific warm pool structure associated with El Nino

被引:27
作者
Hu, Shijian [1 ,2 ,3 ,4 ]
Hu, Dunxin [1 ,2 ,3 ]
Guan, Cong [1 ,2 ,4 ]
Xing, Nan [5 ]
Li, Jianping [5 ]
Feng, Junqiao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, 7 Nanhai Rd, Qingdao 266071, Peoples R China
[2] Chinese Acad Sci, Key Lab Ocean Circulat & Wave, Qingdao, Peoples R China
[3] Qingdao Natl Lab Marine Sci & Technol, Lab Ocean & Climate Dynam, Qingdao, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Western Pacific warm pool; SST structure; WPWP split; El Nino; SEA-SURFACE TEMPERATURE; INTERANNUAL VARIABILITY; HEAT-BALANCE; OCEAN; MOTION; ROLES;
D O I
10.1007/s00382-016-3459-y
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Sea surface temperature (SST) structure inside the western Pacific warm pool (WPWP) is usually overlooked because of its distinct homogeneity, but in fact it possesses a clear meridional high-low-high pattern. Here we show that the SST low in the WPWP is significantly intensified in July-October of El Nino years (especially extreme El Nino years) and splits the 28.5 A degrees C-isotherm-defined WPWP (WPWP split for simplification). Composite analysis and heat budget analysis indicate that the enhanced upwelling due to positive wind stress curl anomaly and western propagating upwelling Rossby waves account for the WPWP split. Zonal advection at the eastern edge of split region plays a secondary role in the formation of the WPWP split. Composite analysis and results from a Matsuno-Gill model with an asymmetric cooling forcing imply that the WPWP split seems to give rise to significant anomalous westerly winds and intensify the following El Nino event. Lead-lag correlation shows that the WPWP split slightly leads the Nino 3.4 index.
引用
收藏
页码:2431 / 2449
页数:19
相关论文
共 53 条
[1]   The ECMWF ocean analysis system: ORA-S3 [J].
Balmaseda, Magdalena A. ;
Vidard, Arthur ;
Anderson, David L. T. .
MONTHLY WEATHER REVIEW, 2008, 136 (08) :3018-3034
[2]   Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5 [J].
Brown, Jaclyn N. ;
Langlais, Clothilde ;
Maes, Christophe .
CLIMATE DYNAMICS, 2014, 42 (11-12) :3061-3076
[3]  
Brown JN, 2012, CLIVAR EXCH, V59, P34
[4]   A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA) [J].
Carton, James A. ;
Giese, Benjamin S. .
MONTHLY WEATHER REVIEW, 2008, 136 (08) :2999-3017
[5]   Improved scheme for determining the thermal centroid of the oceanic warm pool using sea surface temperature data [J].
Chen, G ;
Fang, LX .
JOURNAL OF OCEANOGRAPHY, 2005, 61 (02) :295-299
[6]   Observing the coupling effect between warm pool and "rain pool" in the Pacific Ocean [J].
Chen, G ;
Fang, CY ;
Zhang, CY ;
Chen, Y .
REMOTE SENSING OF ENVIRONMENT, 2004, 91 (02) :153-159
[7]   Why are there tropical warm pools? [J].
Clement, AC ;
Seager, R ;
Murtugudde, R .
JOURNAL OF CLIMATE, 2005, 18 (24) :5294-5311
[8]   Observed freshening and warming of the western Pacific Warm Pool [J].
Cravatte, Sophie ;
Delcroix, Thierry ;
Zhang, Dongxiao ;
McPhaden, Michael ;
Leloup, Julie .
CLIMATE DYNAMICS, 2009, 33 (04) :565-589
[9]   The upper ocean heat balance in the western equatorial Pacific warm pool during September-December 1992 [J].
Cronin, MF ;
McPhaden, MJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1997, 102 (C4) :8533-8553
[10]  
GILL AE, 1980, Q J ROY METEOR SOC, V106, P447, DOI 10.1002/qj.49710644905