The nontrivial solutions for fractional Schrodinger-Poisson equations with magnetic fields and critical or supercritical growth

被引:3
作者
Liu, Lintao [1 ]
Chen, Haibo [1 ]
机构
[1] Cent South Univ, Dept Math, Changsha 410083, Hunan, Peoples R China
关键词
Fractional Schrodinger-Poisson equation; Critical or supercritical growth; Variational methods; Nontrivial solution; POSITIVE SOLUTIONS; MULTIPLICITY; STATE;
D O I
10.1016/j.aml.2021.107358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following fractional Schrodinger-Poisson equation with magnetic field (-Delta)(A)(s)u + V(x)u + (vertical bar x vertical bar(2t-3) * vertical bar u vertical bar(2))u = f(x, vertical bar u vertical bar(2))u + lambda vertical bar u vertical bar(p-2)u in R-3, where lambda > 0, s is an element of (3/4, 1), t is an element of (0, 1), p >= 2(s)* = 6/3-2s, (-Delta)(A)(s) is the fractional magnetic Laplacian, V : R-3 -> R is a positive continuous potential, A : R-3 -> R-3 is a smooth magnetic potential. We mainly prove that the above equation has a nontrivial solution for small lambda > 0 and p > 2(s)*. (C) 2021 Published by Elsevier Ltd.
引用
收藏
页数:9
相关论文
共 24 条
[1]   Multiplicity and Concentration Results for Fractional Schrodinger-Poisson Equations with Magnetic Fields and Critical Growth [J].
Ambrosio, Vincenzo .
POTENTIAL ANALYSIS, 2020, 52 (04) :565-600
[2]   Multiplicity and concentration results for a fractional Schrodinger-Poisson type equation with magnetic field [J].
Ambrosio, Vincenzo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) :655-694
[3]   Concentrating solutions for a class of nonlinear fractional Schrodinger equations in RN [J].
Ambrosio, Vincenzo .
REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (05) :1367-1414
[4]  
Ambrosio V, 2018, MILAN J MATH, V86, P125, DOI 10.1007/s00032-018-0283-3
[5]   Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method [J].
Ambrosio, Vincenzo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2043-2062
[6]  
[Anonymous], 2018, ELECT J DIFFERENTIAL
[7]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[8]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[9]   GROUND STATES FOR FRACTIONAL MAGNETIC OPERATORS [J].
d'Avenia, Pietro ;
Squassina, Marco .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (01) :1-24
[10]   Concentrating standing waves for the fractional nonlinear Schrodinger equation [J].
Davila, Juan ;
del Pino, Manuel ;
Wei, Juncheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) :858-892