Optimal policy for value-based decision-making

被引:120
作者
Tajima, Satohiro [1 ]
Drugowitsch, Jan [1 ,2 ]
Pouget, Alexandre [1 ,3 ,4 ]
机构
[1] Univ Geneva, Dept Neurosci Fondamentales, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
[2] Harvard Med Sch, Dept Neurobiol, 220 Longwood Ave, Boston, MA 02115 USA
[3] Univ Rochester, Dept Brain & Cognit Sci, Rochester, NY 14627 USA
[4] UCL, Gatsby Computat Neurosci Unit, London, England
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
瑞士国家科学基金会;
关键词
DRIFT-DIFFUSION MODEL; VISUAL FIXATIONS;
D O I
10.1038/ncomms12400
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For decades now, normative theories of perceptual decisions, and their implementation as drift diffusion models, have driven and significantly improved our understanding of human and animal behaviour and the underlying neural processes. While similar processes seem to govern value-based decisions, we still lack the theoretical understanding of why this ought to be the case. Here, we show that, similar to perceptual decisions, drift diffusion models implement the optimal strategy for value-based decisions. Such optimal decisions require the models' decision boundaries to collapse over time, and to depend on the a priori knowledge about reward contingencies. Diffusion models only implement the optimal strategy under specific task assumptions, and cease to be optimal once we start relaxing these assumptions, by, for example, using non-linear utility functions. Our findings thus provide the much-needed theory for value-based decisions, explain the apparent similarity to perceptual decisions, and predict conditions under which this similarity should break down.
引用
收藏
页数:12
相关论文
共 30 条
[1]   How the brain integrates costs and benefits during decision making [J].
Basten, Ulrike ;
Biele, Guido ;
Heekeren, Hauke R. ;
Fiebach, Christian J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (50) :21767-21772
[2]   Probabilistic Population Codes for Bayesian Decision Making [J].
Beck, Jeffrey M. ;
Ma, Wei Ji ;
Kiani, Roozbeh ;
Hanks, Tim ;
Churchland, Anne K. ;
Roitman, Jamie ;
Shadlen, Michael N. ;
Latham, Peter E. ;
Pouget, Alexandre .
NEURON, 2008, 60 (06) :1142-1152
[3]   A gridding method for Bayesian sequential decision problems [J].
Brockwell, AE ;
Kadane, JB .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (03) :566-584
[4]   Rats and Humans Can Optimally Accumulate Evidence for Decision-Making [J].
Brunton, Bingni W. ;
Botvinick, Matthew M. ;
Brody, Carlos D. .
SCIENCE, 2013, 340 (6128) :95-98
[5]   Decision-making with multiple alternatives [J].
Churchland, Anne K. ;
Kiani, Roozbeh ;
Shadlen, Michael N. .
NATURE NEUROSCIENCE, 2008, 11 (06) :693-702
[6]   Optimal multisensory decision-making 2 in a reaction-time task [J].
Drugowitsch, Jan ;
DeAngelis, Gregory C. ;
Klier, Eliana M. ;
Angelaki, Dora E. ;
Pouget, Alexandre .
ELIFE, 2014, 3
[7]   The Cost of Accumulating Evidence in Perceptual Decision Making [J].
Drugowitsch, Jan ;
Moreno-Bote, Ruben ;
Churchland, Anne K. ;
Shadlen, Michael N. ;
Pouget, Alexandre .
JOURNAL OF NEUROSCIENCE, 2012, 32 (11) :3612-3628
[8]   Can Monkeys Choose Optimally When Faced with Noisy Stimuli and Unequal Rewards? [J].
Feng, Samuel ;
Holmes, Philip ;
Rorie, Alan ;
Newsome, William T. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (02)
[9]  
Fudenberg Drew., 2015, Stochastic choice and optimal sequential sampling
[10]   Polyhydroxy Fullerenes (Fullerols or Fullerenols): Beneficial Effects on Growth and Lifespan in Diverse Biological Models [J].
Gao, Jie ;
Wang, Yihai ;
Folta, Kevin M. ;
Krishna, Vijay ;
Bai, Wei ;
Indeglia, Paul ;
Georgieva, Angelina ;
Nakamura, Hideya ;
Koopman, Ben ;
Moudgil, Brij .
PLOS ONE, 2011, 6 (05)