Design of Functional Fractional-Order Observers for Linear Time-Delay Fractional-Order Systems in the Time Domain

被引:0
|
作者
Boukal, Y. [1 ,2 ]
Darouach, M. [1 ]
Zasadzinski, M. [1 ]
Radhy, N. E. [2 ]
机构
[1] Univ Lorraine, CRAN, UMR 7039, CNRS,IUT Longwy, 186 Rue Lorraine, F-54400 Cosnes Et Romain, France
[2] Univ Hassan 2, Fac Sci Ain Chock, LPMMAT, Casablanca 20100, Morocco
关键词
Fractional-order Time-Delay System; Functional Observer; Lyapunov stability; Linear Matrix Inequality (LMI);
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the functional observers design for linear fractional-order time-delay systems. Conditions for the existence of the these observers are given. Asymptotic stability of these observers are obtained from the fractional-order Lyapunov function. The gains of the observer are derived by using the linear matrix inequality approach. A numerical example is presented to illustrate our approach.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Synchronisation and Circuit Model of Fractional-Order Chaotic Systems with Time-Delay
    Atan, Ozkan
    IFAC PAPERSONLINE, 2016, 49 (29): : 68 - 72
  • [32] Practical stabilization of time-delay fractional-order systems by parametric controllers
    Tahmasbi, Narges
    Tehrani, Hojjat Ahsani
    Esmaeili, Javad
    ISA TRANSACTIONS, 2019, 95 : 211 - 220
  • [33] Observers Design for Singular Fractional-Order Systems
    N'Doye, Ibrahima
    Darouach, Mohamed
    Zasadzinski, Michel
    Radhy, Nour-Eddine
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4017 - 4022
  • [34] New fractional-order integral inequalities: Application to fractional-order systems with time-varying delay
    Hu, Taotao
    He, Zheng
    Zhang, Xiaojun
    Zhong, Shouming
    Yao, Xueqi
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (07): : 3847 - 3867
  • [35] Smith predictor based fractional-order control design for time-delay integer-order systems
    Safaei M.
    Tavakoli S.
    International Journal of Dynamics and Control, 2018, 6 (01) : 179 - 187
  • [36] Comments on "An Algorithm for Stabilization of Fractional-Order Time Delay Systems Using Fractional-Order PID Controllers"
    Hohenbichler, Norbert
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (11) : 2712 - 2712
  • [37] General stabilization method of fractional-order PIλDμ controllers for fractional-order systems with time delay
    Yu, Xinyi
    Yang, Fan
    Ou, Linlin
    Wu, Qunhong
    Zhang, Weidong
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (16) : 4999 - 5018
  • [38] Design of Full and Reduced Orders Observers for Linear Fractional-Order Systems in the Time and Frequency Domains
    Boukal, Y.
    Radhy, N. E.
    Darouach, M.
    Zasadzinski, M.
    2013 3D INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2013,
  • [39] Stability Analysis of Finite Time for a Class of Nonlinear Time-Delay Fractional-Order Systems
    Ben Makhlouf, Abdellatif
    Mchiri, Lassaad
    Rhaima, Mohamed
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [40] The design of NMSS fractional-order predictive functional controller for unstable systems with time delay
    Sanatizadeh, Mahsa
    Bigdeli, Nooshin
    ISA TRANSACTIONS, 2019, 92 : 49 - 64