Design of Functional Fractional-Order Observers for Linear Time-Delay Fractional-Order Systems in the Time Domain

被引:0
|
作者
Boukal, Y. [1 ,2 ]
Darouach, M. [1 ]
Zasadzinski, M. [1 ]
Radhy, N. E. [2 ]
机构
[1] Univ Lorraine, CRAN, UMR 7039, CNRS,IUT Longwy, 186 Rue Lorraine, F-54400 Cosnes Et Romain, France
[2] Univ Hassan 2, Fac Sci Ain Chock, LPMMAT, Casablanca 20100, Morocco
关键词
Fractional-order Time-Delay System; Functional Observer; Lyapunov stability; Linear Matrix Inequality (LMI);
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the functional observers design for linear fractional-order time-delay systems. Conditions for the existence of the these observers are given. Asymptotic stability of these observers are obtained from the fractional-order Lyapunov function. The gains of the observer are derived by using the linear matrix inequality approach. A numerical example is presented to illustrate our approach.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Synthesised fractional-order PD controller design for fractional-order time-delay systems based on improved robust stability surface analysis
    Zhang, Shuo
    Liu, Lu
    Chen, Yang Quan
    Xue, Dingyu
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (20): : 3723 - 3730
  • [22] An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers
    Hamamci, Serdar Ethem
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) : 1964 - 1969
  • [23] Fractional-order IMC-PID controller design for fractional-order time delay processes
    Ahmadi, Amirhossein
    Amani, Ali Moradi
    Boroujeni, Farshad Amini
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 409 - 414
  • [24] Finite-time stability of impulsive fractional-order systems with time-delay
    Hei, Xindong
    Wu, Ranchao
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4285 - 4290
  • [25] Stability Region of Fractional-Order PIλDμ Controller for Fractional-Order Systems with Time Delay
    Wu, Qunhong
    Ou, Linlin
    Ni, Hongjie
    Zhang, Weidong
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 1767 - 1772
  • [26] Geometrical design of fractional PDμ controllers for linear time-invariant fractional-order systems with time delay
    Josue Guel-Cortez, Adrian
    Mendez-Barrios, Cesar-Fernando
    Jorge Gonzalez-Galvan, Emilio
    Mejia-Rodriguez, Gilberto
    Felix, Liliana
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2019, 233 (07) : 815 - 829
  • [27] Pole placement with fractional-order PIλ controllers for time-delay systems
    Lei, Shu-Ying
    Wang, De-Jin
    Fan, Yi-Jun
    Kongzhi yu Juece/Control and Decision, 2015, 30 (06): : 1131 - 1134
  • [28] Fractional-order controllability of multi-agent systems with time-delay
    Liu, Bo
    Su, Housheng
    Wu, Licheng
    Li, Xiali
    Lu, Xue
    NEUROCOMPUTING, 2021, 424 : 268 - 277
  • [29] On calculation of ISE performance indices for fractional-order time-delay systems
    Hwang, Chyi
    Cheng, Yi-Cheng
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2021, 120 : 17 - 23
  • [30] Design of functional interval observers for non-linear fractional-order systems
    Dinh Cong Huong
    ASIAN JOURNAL OF CONTROL, 2020, 22 (03) : 1127 - 1137