Sigma involutions associated with parafermion vertex operator algebra K(sl2, k)

被引:2
作者
Lam, Ching Hung [1 ]
Yamada, Hiromichi [2 ]
机构
[1] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[2] Hitotsubashi Univ, Dept Math, Kunitachi, Tokyo, Japan
关键词
Vertex operator algebra; fusion algebra; automorphism; MCKAYS OBSERVATION; AUTOMORPHISMS; RATIONALITY; EXTENSIONS; VECTORS;
D O I
10.1080/03081087.2021.1969326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An irreducible module for the parafermion vertex operator algebra K(sl(2),k) is said to be of sigma-type if an automorphism of the fusion algebra of K(sl(2),k) of order k is trivial on it. For any integer k >= 3, we show that there exists an automorphism of order 2 of the subalgebra of the fusion algebra of K(sl(2),k)(<theta >) spanned by the irreducible direct summands of sigma-type irreducible K(sl(2),k)-modules, where theta is an involution of K(sl(2), k). We discuss some examples of such an automorphism as well.
引用
收藏
页码:6780 / 6819
页数:40
相关论文
共 45 条
[1]   Rationality, regularity, and C2-cofiniteness [J].
Abe, T ;
Buhl, G ;
Dong, CY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (08) :3391-3402
[2]   Extensions of tensor products of Zp-orbifold models of the lattice vertex operator algebra V√2Ap-1 [J].
Abe, Toshiyuki ;
Lam, Ching Hung ;
Yamada, Hiromichi .
JOURNAL OF ALGEBRA, 2018, 510 :24-51
[3]   Zk-code vertex operator algebras [J].
Arakawa, Tomoyuki ;
Yamada, Hiromichi ;
Yamauchi, Hiroshi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (01) :185-209
[4]   PARAFERMION VERTEX OPERATOR ALGEBRAS AND W-ALGEBRAS [J].
Arakawa, Tomoyuki ;
Lam, Ching Hung ;
Yamada, Hiromichi .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (06) :4277-4301
[5]   Zhu's algebra, C2-algebra and C2-cofiniteness of parafermion vertex operator algebras [J].
Arakawa, Tomoyuki ;
Lam, Ching Hung ;
Yamada, Hiromichi .
ADVANCES IN MATHEMATICS, 2014, 264 :261-295
[6]   Twisted modules over lattice vertex algebras [J].
Bakalov, B ;
Kac, VG .
LIE THEORY AND ITS APPLICATIONS IN PHYSICS V, PROCEEDINGS, 2004, :3-26
[7]   MONSTROUS MOONSHINE AND MONSTROUS LIE-SUPERALGEBRAS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :405-444
[8]  
Carnahan S., 2016, Regularity of fixed-point vertex operator sub-algebras
[9]  
Creutzig T., TENSOR CATEGORIES VE
[10]  
Dong C., 1999, RECENT DEV QUANTUM A, P117