Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation

被引:109
作者
Anastassi, ZA [1 ]
Simos, TE [1 ]
机构
[1] Univ Peloponnese, Fac Sci & Technol, Dept Comp Sci & Technol, GR-22100 Tripolis, Greece
关键词
Runge-Kutta; explicit methods; exponential fitting; trigonometrical fitting; radial Schrodinger equation; resonance problem; energy;
D O I
10.1007/s10910-004-1470-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper we construct two trigonometrically fitted methods based on a classical Runge-Kutta method of England with fifth algebraic order. The methods will be used for the integration of the radial Schrodinger equation and have high efficiency as the results show. The efficiency is higher when using higher energy and this can be explained by the error analysis of the methods. More specifically the new methods have lower powers of the energy in the local truncation error and that keeps the error at lower values.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 6 条
[1]  
ENGELNMULLGES G, 1996, NUMER ALGORITHMS, P423
[2]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[3]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[4]   CHEBYSHEVIAN MULTISTEP METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS [J].
LYCHE, T .
NUMERISCHE MATHEMATIK, 1972, 19 (01) :65-&
[5]  
SIMOS TE, 1998, EXPONENTIALLY FIITED
[6]   Exponentially-fitted explicit Runge-Kutta methods [J].
Vanden Berghe, G ;
De Meyer, H ;
Van Daele, M ;
Van Hecke, T .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) :7-15