A generalization of the Gauss map and some classical theorems on continued fractions

被引:7
作者
Cruz, SD [1 ]
da Rocha, LFC [1 ]
机构
[1] UFRGS, Inst Matemat, Belo Horizonte, MG, Brazil
关键词
D O I
10.1088/0951-7715/18/2/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we generalize the continued fraction algorithm to piecewise rotations of the circle and prove its ergodicity under a finite explicit measure. Using this algorithm, we generalize the classical results on the a.e. convergence of the arithmetic and geometric means of the partial quotients and the Khinchin-Levy theorem.
引用
收藏
页码:505 / 525
页数:21
相关论文
共 12 条
[1]  
ARNOUX P, 1993, ANN SCI ECOLE NORM S, V26, P645
[2]   An extension of Lagrange's theorem to interval exchange transformations over quadratic fields [J].
Boshernitzan, MD ;
Carroll, CR .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 72 (1) :21-44
[3]  
DAROCHA LFC, 1992, CADERNOS MATEMATIC A, P1
[4]   Structure of three interval exchange transformations I: An arithmetic study [J].
Ferenczi, S ;
Holton, C ;
Zamboni, LQ .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (04) :861-901
[5]   THE DIFFERENTIABILITY OF THE CONJUGATION OF CERTAIN DIFFEOMORPHISMS OF THE CIRCLE [J].
KATZNELSON, Y ;
ORNSTEIN, D .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :643-680
[6]   INTERVAL EXCHANGE TRANSFORMATIONS [J].
KEANE, M .
MATHEMATISCHE ZEITSCHRIFT, 1975, 141 (01) :25-31
[7]   INVARIANT-MEASURES FOR GAUSS MAPS ASSOCIATED WITH INTERVAL EXCHANGE MAPS [J].
LOPES, AO ;
DAROCHA, LFC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (04) :1399-1438
[8]  
Rauzy G., 1979, ACTA ARITH, V34, P315
[9]  
Schweiger F., 1995, Ergodic theory of fibred systems and metric number theory
[10]   GAUSS MEASURES FOR TRANSFORMATIONS ON THE SPACE OF INTERVAL EXCHANGE MAPS [J].
VEECH, WA .
ANNALS OF MATHEMATICS, 1982, 115 (01) :201-242