On the properties of Northcott and Narkiewicz for elliptic curves

被引:1
作者
Mello, Jorge [1 ]
Sha, Min [2 ]
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Elliptic curve; Northcott property; property (P); height; ABELIAN-VARIETIES; HEIGHTS; POINTS;
D O I
10.1142/S1793042122501081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, as an analog of the number field case, for an elliptic curve E defined over the algebraic numbers and for any subfield F of algebraic numbers, we say that E has the Northcott property over F if there are at most finitely many F-rational points on E of uniformly bounded height, and we say that E has the property (P) over F if for any infinite subset S of F-rational points on E, f(S) = S for an F-endomorphism f of E implies that f is an automorphism. We establish some criteria for both properties and provide typical examples. We also show that the Northcott property implies the property (P), but the converse is not true.
引用
收藏
页码:2129 / 2144
页数:16
相关论文
共 24 条
[1]   Torsion points with multiplicatively dependent coordinates on elliptic curves [J].
Barroero, Fabrizio ;
Sha, Min .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2020, 52 (05) :807-815
[2]  
Bombieri E., 2001, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei. Matematica e Applicazioni, V12, P5
[3]   ON THE NORTHCOTT PROPERTY AND LOCAL DEGREES [J].
Checcoli, S. ;
Fehm, A. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (06) :2403-2414
[4]   On the Northcott property and other properties related to polynomial mappings [J].
Checcoli, Sara ;
Widmer, Martin .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2013, 155 (01) :1-12
[5]   Cyclotomic diophantine problems (hilbert irreducibility and invariant sets for polynomial maps) [J].
Dvornicich, R. ;
Zannier, U. .
DUKE MATHEMATICAL JOURNAL, 2007, 139 (03) :527-554
[6]   ON THE PROPERTIES OF NORTHCOTT AND OF NARKIEWICZ FOR FIELDS OF ALGEBRAIC NUMBERS [J].
Dvornicich, Roberto ;
Zannier, Umberto .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2008, 39 (01) :163-173
[7]   Three counterexamples concerning the Northcott property of fields [J].
Fehm, Arno .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (02) :309-314
[8]  
Hindry M., 2000, Diophantine geometry
[9]  
Im BH, 2008, AM J MATH, V130, P1195
[10]   Mordell-Weil groups and the rank of elliptic curves over large fields [J].
Im, Bo-Hae .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (04) :796-819