Multi-Scale Surface Roughness Optimization Through Genetic Algorithms

被引:17
作者
Cinat, Paolo [1 ]
Gnecco, Giorgio [1 ]
Paggi, Marco [1 ]
机构
[1] IMT Sch Adv Studies, Lucca, Italy
来源
FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND | 2020年 / 6卷
关键词
surface roughness; multivariate Weierstrass-Mandelbrot function; contact mechanics; optimization; genetic algorithms; ELASTIC CONTACT; COMPOSITES; RESISTANCE; ADHESION; DESIGN;
D O I
10.3389/fmech.2020.00029
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Artificial intelligence is changing perspectives of industries about manufacturing of components, introducing emerging techniques such as additive manufacturing technologies. These techniques can be exploited to manufacture not only precision mechanical components, but also interfaces. In this context, we investigate the use of artificial intelligence and in particular genetic algorithms to identify optimal multi-scale roughness features to design prototype surfaces achieving a target contact mechanics response. Exploiting an analogy with biology, the features of roughness at a given length scale are described through model profiles named chromosomes. In the present work, the mathematical description of chromosomes is firstly provided, then three genetic algorithms are proposed to superimpose and combine them in order to identify optimal roughness features. The three methods are compared, discussing the topological and spectral features of roughness obtained in each case.
引用
收藏
页数:14
相关论文
共 41 条
[31]   The coefficient of proportionality K between real contact area and load, with new asperity models [J].
Paggi, Marco ;
Ciavarella, Michele .
WEAR, 2010, 268 (7-8) :1020-1029
[32]  
Sherge M., 2001, BIOL MICRO NANOTRIBO
[33]  
Svanberg K, 2001, SIAM J OPTIMIZ, V12, P555
[34]   Modeling and simulation in tribology across scales: An overview [J].
Vakis, A. I. ;
Yastrebov, V. A. ;
Scheibert, J. ;
Nicola, L. ;
Dini, D. ;
Minfray, C. ;
Almqvist, A. ;
Paggi, M. ;
Lee, S. ;
Limbert, G. ;
Molinari, J. F. ;
Anciaux, G. ;
Aghababaei, R. ;
Restrepo, S. Echeverri ;
Papangelo, A. ;
Cammarata, A. ;
Nicolini, P. ;
Putignano, C. ;
Carbone, G. ;
Stupkiewicz, S. ;
Lengiewicz, J. ;
Costagliola, G. ;
Bosia, F. ;
Guarino, R. ;
Pugno, N. M. ;
Mueser, M. H. ;
Ciavarella, M. .
TRIBOLOGY INTERNATIONAL, 2018, 125 :169-199
[35]   Uncertainty in fractal dimension estimated from power spectra and variograms [J].
Wen, RJ ;
SindingLarsen, R .
MATHEMATICAL GEOLOGY, 1997, 29 (06) :727-753
[36]   Areal Surface Roughness Optimization of Maraging Steel Parts Produced by Hybrid Additive Manufacturing [J].
Wuest, Philipp ;
Edelmann, Andre ;
Hellmann, Ralf .
MATERIALS, 2020, 13 (02)
[37]   Prediction of Surface Roughness and Optimization of Cutting Parameters of Stainless Steel Turning Based on RSM [J].
Xiao, Maohua ;
Shen, Xiaojie ;
Ma, You ;
Yang, Fei ;
Gao, Nong ;
Wei, Weihua ;
Wu, Dan .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
[38]  
Zain AM, 2008, INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS, P2656
[39]   On the resolution dependence of micromechanical contact models [J].
Zavarise, Giorgio ;
Borri-Brunetto, Mauro ;
Paggi, Marco .
WEAR, 2007, 262 (1-2) :42-54
[40]   Surface roughness optimization in an end-milling operation using the Taguchi design method [J].
Zhang, Julie Z. ;
Chen, Joseph C. ;
Kirby, E. Daniel .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 184 (1-3) :233-239