Validating heat balance models for tungsten dust in cold dense plasmas

被引:8
作者
Vignitchouk, L. [1 ]
Ratynskaia, S. [1 ]
Kantor, M. [2 ]
Tolias, P. [1 ]
De Angeli, M. [3 ]
van der Meiden, H. [4 ]
Vernimmen, J. [4 ]
Brochard, F. [5 ]
Shalpegin, A. [5 ]
Thoren, E. [1 ]
Banon, J-P [6 ]
机构
[1] KTH Royal Inst Technol, Space & Plasma Phys, Stockholm, Sweden
[2] Ioffe Inst, St Petersburg 194021, Russia
[3] CNR, Ist Fis Plasma Piero Caldirola, Via Cozzi 53, I-20125 Milan, Italy
[4] Dutch Inst Fundamental Energy Res, FOM Inst DIFFER, De Zaale 20, NL-5612 AJ Eindhoven, Netherlands
[5] Univ Lorraine, Inst Jean Lamour, UMR 7198, CNRS, F-54506 Vandoeuvre Les Nancy, France
[6] NTNU Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway
基金
瑞典研究理事会;
关键词
tungsten; dust; orbital-motion-limited; Pilot-PSI; PARTICLES; TRANSPORT; EMISSION; TOKAMAK;
D O I
10.1088/1361-6587/aadbcb
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The first comparison of dust radius and surface temperature estimates, obtained from spectroscopic measurements of thermal radiation, with simulations of dust heating and vaporization by the MIGRAINe dust dynamics code is reported. The measurements were performed during controlled tungsten dust injection experiments in the cold and dense plasmas of Pilot-PSI, reproducing ITER divertor conditions. The comparison has allowed us to single out the dominating role of the work function contribution to the dust heating budget. However, in the plasmas of interest, dust was found to enter the strong vaporization regime, in which its temperature is practically insensitive to plasma properties and the various uncertainties in modeling. This makes the dust temperature a poor figure of merit for model validation purposes. On the other hand, simple numerical scalings obtained from orbital-motion-limited estimates were found to be remarkably robust and sufficient to understand the main physics at play in such cold and dense plasmas.
引用
收藏
页数:12
相关论文
共 42 条
[1]   Simulation of W dust transport in the KSTAR tokamak, comparison with fast camera data [J].
Autricque, A. ;
Hong, S. H. ;
Fedorczak, N. ;
Son, S. H. ;
Lee, H. Y. ;
Song, I. ;
Choe, W. ;
Grisolia, C. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :599-604
[2]   Magnetized electron emission from a small spherical dust grain in fusion related plasmas [J].
Autricque, A. ;
Fedorczak, N. ;
Khrapak, S. A. ;
Couedel, L. ;
Klumov, B. ;
Arnas, C. ;
Ning, N. ;
Layet, J. -M. ;
Grisolia, C. .
PHYSICS OF PLASMAS, 2017, 24 (12)
[3]   Floating potential of large dust grains with electron emission [J].
Bacharis, M. .
PHYSICS OF PLASMAS, 2014, 21 (07)
[4]  
Bohren C. F., 1983, Absorption and Scattering of Light by Small Particles, DOI 10.1002/9783527618156
[5]   Video analysis of dust events in full-tungsten ASDEX Upgrade [J].
Brochard, F. ;
Shalpegin, A. ;
Bardin, S. ;
Lunt, T. ;
Rohde, V. ;
Brianon, J. L. ;
Pautasso, G. ;
Vorpahl, C. ;
Neu, R. .
NUCLEAR FUSION, 2017, 57 (03)
[6]   On vapor shielding of dust grains of iron, molybdenum, and tungsten in fusion plasmas [J].
Brown, B. T. ;
Smirnov, R. D. ;
Krasheninnikov, S. I. .
PHYSICS OF PLASMAS, 2014, 21 (02)
[7]   Extreme hydrogen plasma fluxes at pilot-PSI enter the ITER divertor regime [J].
de Groota, B. ;
Al, R. S. ;
Engeln, R. ;
Goedheer, W. J. ;
Kruijt, O. G. ;
Meiden, H. J. V. D. ;
Prins, P. R. ;
Schram, D. C. ;
Smeets, P. H. M. ;
Veremiyenko, V. P. ;
Vijvers, W. A. J. ;
Westerhout, J. ;
Kleyn, A. W. ;
Lopes Cardozo, N. J. ;
van Rooij, G. J. .
FUSION ENGINEERING AND DESIGN, 2007, 82 (15-24) :1861-1865
[8]   Dust creation and transport in MAST [J].
De Temmerman, G. ;
Bacharis, M. ;
Dowling, J. ;
Lisgo, S. .
NUCLEAR FUSION, 2010, 50 (10)
[9]   Charging and Heat Collection by a Positively Charged Dust Grain in a Plasma [J].
Delzanno, Gian Luca ;
Tang, Xian-Zhu .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[10]   Survivability of dust in tokamaks: Dust transport in the divertor sheath [J].
Delzanno, Gian Luca ;
Tang, Xianzhu .
PHYSICS OF PLASMAS, 2014, 21 (02)