Asymptotic inference for unit root processes with GARCH(1,1) errors

被引:44
作者
Ling, SQ [1 ]
Li, WK
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1017/S0266466603194029
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper investigates the so-called one-step local quasi-maximum likelihood estimator for the unit root process with GARCH(1,1) errors. When the scaled conditional errors (the ratio of the disturbance to the conditional standard deviation) follow a symmetric distribution, the asymptotic distribution of the estimated unit root is derived only under the second-order moment condition. It is shown that this distribution is a functional of a bivariate Brownian motion as in Ling and Li (1998, Annals of Statistics 26, 84-125) and can be used to construct the unit root test.
引用
收藏
页码:541 / 564
页数:24
相关论文
共 20 条
[1]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[2]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[3]  
Bollerslev T, 1994, Handbook of econometrics, V4, P2959, DOI [10.1016/S1573-4412(05)80018-2, DOI 10.1016/S1573-4412(05)80018-2]
[4]   LIMITING DISTRIBUTIONS OF LEAST-SQUARES ESTIMATES OF UNSTABLE AUTOREGRESSIVE PROCESSES [J].
CHAN, NH ;
WEI, CZ .
ANNALS OF STATISTICS, 1988, 16 (01) :367-401
[5]  
DAVIS RA, 1999, SAMPLE ACF MULTIVARI
[6]  
HALL P, 1980, MARTINGALE LIMIT THE
[8]   WEAK LIMIT-THEOREMS FOR STOCHASTIC INTEGRALS AND STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
KURTZ, TG ;
PROTTER, P .
ANNALS OF PROBABILITY, 1991, 19 (03) :1035-1070
[9]   ASYMPTOTIC THEORY FOR THE GARCH(1,1) QUASI-MAXIMUM LIKELIHOOD ESTIMATOR [J].
LEE, SW ;
HANSEN, BE .
ECONOMETRIC THEORY, 1994, 10 (01) :29-52
[10]  
Ling SQ, 1998, ANN STAT, V26, P84