Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images

被引:33
作者
de la Fuente-Arriaga, Jose Abel [1 ]
Felipe-Riveron, Edgardo M. [2 ]
Garduno-Calderon, Eduardo [3 ]
机构
[1] Tecnol Estudios Super Jocotitlan, Jocotitlan, Mexico
[2] Inst Politecn Nacl, Ctr Invest Computac, Mexico City, DF, Mexico
[3] Ctr Oftalmal Atlacomulco, Atlacomulco, Mexico
关键词
Glaucoma detection; Vascular bundle displacement; Excavation detection; Optic papilla segmentation; Chessboard distance metric; CUP;
D O I
10.1016/j.compbiomed.2014.01.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a methodology for glaucoma detection based on measuring displacements of blood vessels within the optic disc (vascular bundle) in human retinal images. The method consists of segmenting the region of the vascular bundle in an optic disc to set a reference point in the temporal side of the cup, determining the position of the centroids of the superior, inferior, and nasal vascular bundle segmented zones located within the segmented region, and calculating the displacement from normal position using the chessboard distance metric. The method was successful in 62 images out of 67, achieving 93.02% sensitivity, 91.66% specificity, and 91.34% global accuracy in pre-diagnosis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 50 条
[31]   Glaucoma assessment from color fundus images using convolutional neural network [J].
Elangovan, Poonguzhali ;
Nath, Malaya Kumar .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (02) :955-971
[32]   Deep Learning-based Glaucoma Detection Using CNN and Digital Fundus Images: A Promising Approach for Precise Diagnosis [J].
Song, Ruiying ;
Wang, Hong ;
Xing, Yinghua .
CURRENT MEDICAL IMAGING, 2024, 20
[33]   Data and image processing for intelligent glaucoma detection and optic disc segmentation using deep convolutional neural network architecture [J].
Mahmood, Mohammed Thakir ;
Ucan, Osman Nuri .
DISCOVER COMPUTING, 2025, 28 (01)
[34]   Glaucoma Detection in Retinal Fundus Images Based on Deep Transfer Learning and Fuzzy Aggregation Operators [J].
Ali, Mohammed Yousef Salem ;
Jabreel, Mohammad ;
Valls, Aida ;
Baget, Marc ;
Abdel-Nasser, Mohamed .
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (02)
[35]   An evolutionary supply chain management service model based on deep learning features for automated glaucoma detection using fundus images [J].
Sharma, Santosh Kumar ;
Muduli, Debendra ;
Priyadarshini, Rojalina ;
Kumar, Rakesh Ranjan ;
Kumar, Abhinav ;
Pradhan, Jitesh .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
[36]   A deep learning framework for glaucoma detection based on robust optic disc segmentation and transfer learning [J].
Natarajan, Deepa ;
Sankaralingam, Esakkirajan ;
Balraj, Keerthiveena ;
Karuppusamy, Selvakumar .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (01) :230-250
[37]   En-ConvNet: A novel approach for glaucoma detection from color fundus images using ensemble of deep convolutional neural networks [J].
Elangovan, Poonguzhali ;
Nath, Malaya Kumar .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (06) :2034-2048
[38]   Computer aided diagnosis of glaucoma using discrete and empirical wavelet transform from fundus images [J].
Kirar, Bhupendra Singh ;
Agrawal, Dheeraj Kumar .
IET IMAGE PROCESSING, 2019, 13 (01) :73-82
[39]   Automated Optic Disc region location from fundus images: Using local multi-level thresholding, best channel selection, and an Intensity Profile Model [J].
Uribe-Valencia, Laura J. ;
Martinez-Carballido, Jorge F. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 51 :148-161
[40]   CDAM-Net: Channel shuffle dual attention based multi-scale CNN for efficient glaucoma detection using fundus images [J].
Das, Dipankar ;
Nayak, Deepak Ranjan ;
Bhandary, Sulatha V. ;
Acharya, U. Rajendra .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133