Application of vascular bundle displacement in the optic disc for glaucoma detection using fundus images

被引:34
作者
de la Fuente-Arriaga, Jose Abel [1 ]
Felipe-Riveron, Edgardo M. [2 ]
Garduno-Calderon, Eduardo [3 ]
机构
[1] Tecnol Estudios Super Jocotitlan, Jocotitlan, Mexico
[2] Inst Politecn Nacl, Ctr Invest Computac, Mexico City, DF, Mexico
[3] Ctr Oftalmal Atlacomulco, Atlacomulco, Mexico
关键词
Glaucoma detection; Vascular bundle displacement; Excavation detection; Optic papilla segmentation; Chessboard distance metric; CUP;
D O I
10.1016/j.compbiomed.2014.01.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a methodology for glaucoma detection based on measuring displacements of blood vessels within the optic disc (vascular bundle) in human retinal images. The method consists of segmenting the region of the vascular bundle in an optic disc to set a reference point in the temporal side of the cup, determining the position of the centroids of the superior, inferior, and nasal vascular bundle segmented zones located within the segmented region, and calculating the displacement from normal position using the chessboard distance metric. The method was successful in 62 images out of 67, achieving 93.02% sensitivity, 91.66% specificity, and 91.34% global accuracy in pre-diagnosis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 35
页数:9
相关论文
共 50 条
[21]   An automated classification framework for glaucoma detection in fundus images using ensemble of dynamic selection methods [J].
Pathan, Sumaiya ;
Kumar, Preetham ;
Pai, Radhika M. ;
Bhandary, Sulatha V. .
PROGRESS IN ARTIFICIAL INTELLIGENCE, 2023, 12 (03) :287-301
[22]   NDC-IVM: An automatic segmentation of optic disc and cup region from medical images for glaucoma detection [J].
Balakrishnan, Umarani .
JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2017, 10 (03)
[23]   Optimized Improved Random Forest-Fostered Glaucoma Detection from Fundus Retinal Images [J].
Pandeeswari, B. ;
Alice, K. .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (12)
[24]   Real-Time Glaucoma Detection From Digital Fundus Images Using Self-ONNs [J].
Devecioglu, Ozer Can ;
Malik, Junaid ;
Ince, Turker ;
Kiranyaz, Serkan ;
Atalay, Eray ;
Gabbouj, Moncef .
IEEE ACCESS, 2021, 9 :140031-140041
[25]   Multimodal Segmentation of Optic Disc and Cup from Stereo Fundus and SD-OCT Images [J].
Miri, Mohammad Saleh ;
Lee, Kyungmoo ;
Niemeijer, Meindert ;
Abramoff, Michael D. ;
Kwon, Young H. ;
Garvin, Mona K. .
MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
[26]   Domain Generalisation for Glaucoma Detection in Retinal Images from Unseen Fundus Cameras [J].
Gunasinghe, Hansi ;
McKelvie, James ;
Koay, Abigail ;
Mayo, Michael .
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT II, 2022, 13758 :421-433
[27]   Superpixel Segmentation Methods on Stereo Fundus Images and Disparity Map for Glaucoma Detection [J].
Norouzifard, Mohammad ;
Dawda, Arpita ;
Abdul-Rahman, Anmar ;
GholamHosseini, Hamid ;
Klette, Reinhard .
2018 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2018,
[28]   Computer-aided diagnosis of glaucoma using fundus images: A review [J].
Hagiwara, Yuki ;
Koh, Joel En Wei ;
Tan, Jen Hong ;
Bhandary, Sulatha V. ;
Laude, Augustinus ;
Ciaccio, Edward J. ;
Tong, Louis ;
Acharya, U. Rajendra .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 165 :1-12
[29]   A Novel SDMFO-MBSVM-Based Segmentation and Classification Framework for Glaucoma Detection Using OCT and Fundus Images [J].
Rayavel, P. ;
Murukesh, C. .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (14)
[30]   Optic Disc and Cup Segmentation for Glaucoma Characterization Using Deep Learning [J].
Kim, Jongwoo ;
Loc Tran ;
Chew, Emily Y. ;
Antani, Sameer .
2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, :489-494