Momentum structure of the self-energy and its parametrization for the two-dimensional Hubbard model

被引:19
作者
Pudleiner, P. [1 ,2 ]
Schaefer, T. [2 ]
Rost, D. [1 ,3 ]
Li, G. [2 ]
Held, K. [2 ]
Bluemer, N. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[2] TU Vienna, Inst Solid State Phys, A-1040 Vienna, Austria
[3] Johannes Gutenberg Univ Mainz, Grad Sch Mat Sci Mainz, D-55099 Mainz, Germany
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
MEAN-FIELD THEORY; ELECTRON; APPROXIMATION; SYSTEMS;
D O I
10.1103/PhysRevB.93.195134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We compute the self-energy for the half-filled Hubbard model on a square lattice using lattice quantum Monte Carlo simulations and the dynamical vertex approximation. The self-energy is strongly momentum-dependent, but it can be parametrized via the noninteracting energy-momentum dispersion epsilon(k), except for pseudogap features right at the Fermi edge. That is, it can be written as Sigma (epsilon(k), omega), with two energylike parameters (epsilon, omega) instead of three (k(x), k(y), and omega). The self-energy has two rather broad and weakly dispersing high-energy features and a sharp omega = epsilon(k) feature at high temperatures, which turns to omega = -epsilon(k) at low temperatures. Altogether this yields a Z-and reversed-Z-like structure, respectively, for the imaginary part of Sigma (epsilon(k), omega). We attribute the change of the low-energy structure to antiferromagnetic spin fluctuations.
引用
收藏
页数:12
相关论文
共 67 条
[31]   Antiferromagnetism and d-wave superconductivity in cuprates:: A cluster dynamical mean-field theory [J].
Lichtenstein, AI ;
Katsnelson, MI .
PHYSICAL REVIEW B, 2000, 62 (14) :R9283-R9286
[32]   Quantum cluster theories [J].
Maier, T ;
Jarrell, M ;
Pruschke, T ;
Hettler, MH .
REVIEWS OF MODERN PHYSICS, 2005, 77 (03) :1027-1080
[33]   CORRELATED LATTICE FERMIONS IN D=INFINITY DIMENSIONS [J].
METZNER, W ;
VOLLHARDT, D .
PHYSICAL REVIEW LETTERS, 1989, 62 (03) :324-327
[34]   METAL-INSULATOR TRANSITION [J].
MOTT, NF .
REVIEWS OF MODERN PHYSICS, 1968, 40 (04) :677-&
[35]   THE BASIS OF THE ELECTRON THEORY OF METALS, WITH SPECIAL REFERENCE TO THE TRANSITION METALS [J].
MOTT, NF .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1949, 62 (355) :416-422
[36]  
Negele J.W., 1988, QUANTUM MANY PARTICL, V200
[37]   Momentum-resolved spectral functions of SrVO3 calculated by LDA plus DMFT [J].
Nekrasov, IA ;
Held, K ;
Keller, G ;
Kondakov, DE ;
Pruschke, T ;
Kollar, M ;
Andersen, OK ;
Anisimov, VI ;
Vollhardt, D .
PHYSICAL REVIEW B, 2006, 73 (15)
[38]   A phenomenological theory of the anomalous pseudogap phase in underdoped cuprates [J].
Rice, T. M. ;
Yang, Kai-Yu ;
Zhang, F. C. .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (01)
[39]   One-particle irreducible functional approach: A route to diagrammatic extensions of the dynamical mean-field theory [J].
Rohringer, G. ;
Toschi, A. ;
Hafermann, H. ;
Held, K. ;
Anisimov, V. I. ;
Katanin, A. A. .
PHYSICAL REVIEW B, 2013, 88 (11)
[40]   Local electronic correlation at the two-particle level [J].
Rohringer, G. ;
Valli, A. ;
Toschi, A. .
PHYSICAL REVIEW B, 2012, 86 (12)