Momentum structure of the self-energy and its parametrization for the two-dimensional Hubbard model

被引:19
作者
Pudleiner, P. [1 ,2 ]
Schaefer, T. [2 ]
Rost, D. [1 ,3 ]
Li, G. [2 ]
Held, K. [2 ]
Bluemer, N. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[2] TU Vienna, Inst Solid State Phys, A-1040 Vienna, Austria
[3] Johannes Gutenberg Univ Mainz, Grad Sch Mat Sci Mainz, D-55099 Mainz, Germany
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
MEAN-FIELD THEORY; ELECTRON; APPROXIMATION; SYSTEMS;
D O I
10.1103/PhysRevB.93.195134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We compute the self-energy for the half-filled Hubbard model on a square lattice using lattice quantum Monte Carlo simulations and the dynamical vertex approximation. The self-energy is strongly momentum-dependent, but it can be parametrized via the noninteracting energy-momentum dispersion epsilon(k), except for pseudogap features right at the Fermi edge. That is, it can be written as Sigma (epsilon(k), omega), with two energylike parameters (epsilon, omega) instead of three (k(x), k(y), and omega). The self-energy has two rather broad and weakly dispersing high-energy features and a sharp omega = epsilon(k) feature at high temperatures, which turns to omega = -epsilon(k) at low temperatures. Altogether this yields a Z-and reversed-Z-like structure, respectively, for the imaginary part of Sigma (epsilon(k), omega). We attribute the change of the low-energy structure to antiferromagnetic spin fluctuations.
引用
收藏
页数:12
相关论文
共 67 条
[21]   Quantum Monte Carlo algorithm for nonlocal corrections to the dynamical mean-field approximation [J].
Jarrell, M ;
Maier, T ;
Huscroft, C ;
Moukouri, S .
PHYSICAL REVIEW B, 2001, 64 (19)
[22]   Comparing pertinent effects of antiferromagnetic fluctuations in the two- and three-dimensional Hubbard model [J].
Katanin, A. A. ;
Toschi, A. ;
Held, K. .
PHYSICAL REVIEW B, 2009, 80 (07)
[23]   FLEX plus DMFT approach to the d-wave superconducting phase diagram of the two-dimensional Hubbard model [J].
Kitatani, Motoharu ;
Tsuji, Naoto ;
Aoki, Hideo .
PHYSICAL REVIEW B, 2015, 92 (08)
[24]   Strongly correlated materials: Insights from dynamical mean-field theory [J].
Kotliar, G ;
Vollhardt, D .
PHYSICS TODAY, 2004, 57 (03) :53-59
[25]   Cellular dynamical mean field approach to strongly correlated systems -: art. no. 186401 [J].
Kotliar, G ;
Savrasov, SY ;
Pálsson, G ;
Biroli, G .
PHYSICAL REVIEW LETTERS, 2001, 87 (18) :186401-1
[26]   Influence of spatial correlations in strongly correlated electron systems: Extension to dynamical mean field approximation [J].
Kusunose, Hiroaki .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (05)
[27]  
LANDAU LD, 1957, SOV PHYS JETP-USSR, V3, P920
[28]   Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms [J].
LeBlanc, J. P. F. ;
Antipov, Andrey E. ;
Becca, Federico ;
Bulik, Ireneusz W. ;
Chan, Garnet Kin-Lic ;
Chung, Chia-Min ;
Deng, Youjin ;
Ferrero, Michel ;
Henderson, Thomas M. ;
Jimenez-Hoyos, Carlos A. ;
Kozik, E. ;
Liu, Xuan-Wen ;
Millis, Andrew J. ;
Prokof'ev, N. V. ;
Qin, Mingpu ;
Scuseria, Gustavo E. ;
Shi, Hao ;
Svistunov, B. V. ;
Tocchio, Luca F. ;
Tupitsyn, I. S. ;
White, Steven R. ;
Zhang, Shiwei ;
Zheng, Bo-Xiao ;
Zhu, Zhenyue ;
Gull, Emanuel .
PHYSICAL REVIEW X, 2015, 5 (04)
[29]   Efficient implementation of the parquet equations: Role of the reducible vertex function and its kernel approximation [J].
Li, Gang ;
Wentzell, Nils ;
Pudleiner, Petra ;
Thunstroem, Patrik ;
Held, Karsten .
PHYSICAL REVIEW B, 2016, 93 (16)
[30]   Hidden physics in the dual-fermion approach: A special case of a nonlocal expansion scheme [J].
Li, Gang .
PHYSICAL REVIEW B, 2015, 91 (16)