Momentum structure of the self-energy and its parametrization for the two-dimensional Hubbard model

被引:19
作者
Pudleiner, P. [1 ,2 ]
Schaefer, T. [2 ]
Rost, D. [1 ,3 ]
Li, G. [2 ]
Held, K. [2 ]
Bluemer, N. [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[2] TU Vienna, Inst Solid State Phys, A-1040 Vienna, Austria
[3] Johannes Gutenberg Univ Mainz, Grad Sch Mat Sci Mainz, D-55099 Mainz, Germany
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
MEAN-FIELD THEORY; ELECTRON; APPROXIMATION; SYSTEMS;
D O I
10.1103/PhysRevB.93.195134
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We compute the self-energy for the half-filled Hubbard model on a square lattice using lattice quantum Monte Carlo simulations and the dynamical vertex approximation. The self-energy is strongly momentum-dependent, but it can be parametrized via the noninteracting energy-momentum dispersion epsilon(k), except for pseudogap features right at the Fermi edge. That is, it can be written as Sigma (epsilon(k), omega), with two energylike parameters (epsilon, omega) instead of three (k(x), k(y), and omega). The self-energy has two rather broad and weakly dispersing high-energy features and a sharp omega = epsilon(k) feature at high temperatures, which turns to omega = -epsilon(k) at low temperatures. Altogether this yields a Z-and reversed-Z-like structure, respectively, for the imaginary part of Sigma (epsilon(k), omega). We attribute the change of the low-energy structure to antiferromagnetic spin fluctuations.
引用
收藏
页数:12
相关论文
共 67 条
[1]  
[Anonymous], 2000, Physics of Solids and Liquids
[2]  
Assaad F. F., 2008, WORLD LINE DETERMINA
[3]   Mott physics and spin fluctuations: A unified framework [J].
Ayral, Thomas ;
Parcollet, Olivier .
PHYSICAL REVIEW B, 2015, 92 (11)
[4]  
Bergeron D., ARXIV150701012
[5]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286
[6]   Kinks in the dispersion of strongly correlated electrons [J].
Byczuk, K. ;
Kollar, M. ;
Held, K. ;
Yang, Y. -F. ;
Nekrasov, I. A. ;
Pruschke, Th. ;
Vollhardt, D. .
NATURE PHYSICS, 2007, 3 (03) :168-171
[7]   Recent advances in determinant quantum Monte Carlo [J].
Chang, Chia-Chen ;
Gogolenko, Sergiy ;
Perez, Jeffrey ;
Bai, Zhaojun ;
Scalettar, Richard T. .
PHILOSOPHICAL MAGAZINE, 2015, 95 (12) :1260-1281
[8]   Dynamical breakup of the Fermi surface in a doped Mott insulator [J].
Civelli, M ;
Capone, M ;
Kancharla, SS ;
Parcollet, O ;
Kotliar, G .
PHYSICAL REVIEW LETTERS, 2005, 95 (10)
[9]  
Gebhard F., 1997, SPRINGER TRACTS MODE, V137
[10]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125