Complete solving of explicit evaluation of Gauss sums in the index 2 case

被引:41
作者
Yang Jing [2 ,3 ]
Xia LingLi [1 ]
机构
[1] Beijing Union Univ, Basic Courses Dept, Beijing 100101, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
基金
中国国家自然科学基金;
关键词
Gauss sum; Stickelberger's theorem; Stickelberger congruence; Davenport-Hasse lifting formula; Davenport-Hasse product formula; IRREDUCIBLE CYCLIC CODES; WEIGHT DISTRIBUTIONS;
D O I
10.1007/s11425-010-3155-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a prime number, N be a positive integer such that gcd( N, p) = 1, q = p(f) where f is the multiplicative order of p modulo N. Let. be a primitive multiplicative character of order N over finite field F(q). This paper studies the problem of explicit evaluation of Gauss sums G(chi) in the "index 2 case" (i.e. [(Z/NZ)* : < p >] = 2). Firstly, the classification of the Gauss sums in the index 2 case is presented. Then, the explicit evaluation of Gauss sums G(chi(lambda)) ( 1 <= lambda <= N - 1) in the index 2 case with order N being general even integer (i.e. N = 2(r) . N(0), where r, N(0) are positive integers and N(0) >= 3 is odd) is obtained. Thus, combining with the researches before, the problem of explicit evaluation of Gauss sums in the index 2 case is completely solved.
引用
收藏
页码:2525 / 2542
页数:18
相关论文
共 20 条
[1]  
Baumert L.D., 1973, DSN Progr. Rep, V16, P128
[2]   WEIGHTS OF IRREDUCIBLE CYCLIC CODES [J].
BAUMERT, LD ;
MCELIECE, RJ .
INFORMATION AND CONTROL, 1972, 20 (02) :158-&
[3]  
Berndt B., 1997, Gauss and Jacobi Sums
[4]  
DAVENPORT H, 1934, J REINE ANGEW MATH, V172, P151
[5]   Gauss sum of index 4: (1) cyclic case [J].
Feng, KQ ;
Yang, J ;
Luo, SX .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (06) :1425-1434
[6]  
FENG KQ, 2009, ALGEBRA C
[7]  
Gauss C. F., 1966, DISQUISITIONES ARITH
[8]  
Ireland K., 1982, CLASSICAL INTRO MODE
[9]  
Langevin P., 1997, J NUMBER THEORY, V32, P59
[10]  
MACWILLIAMS J, 1981, IEEE T INFORM THEORY, V27, P796, DOI 10.1109/TIT.1981.1056420