RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair

被引:48
作者
Smith, AJ [1 ]
Savery, NJ [1 ]
机构
[1] Univ Bristol, Sch Med Sci, Dept Biochem, Bristol BS8 1TD, Avon, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1093/nar/gki225
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bacterial Mfd protein is a transcription-repair coupling factor that performs two key functions during transcription-coupled DNA repair. The first is to remove RNA polymerase (RNAP) complexes that have been stalled by a DNA lesion from the site of damage, and the second is to mediate the recruitment of DNA repair proteins. Mfd also displaces transcription complexes that have been stalled by protein roadblocks, and catalyses the reactivation of transcription complexes that have become 'backtracked'. We have identified amino acid substitutions in the beta subunit of Escherichia coli RNAP that disrupt a direct interaction between Mfd and RNAP. These substitutions prevent Mfd displacing stalled RNAP from DNA in vivo and in vitro. They define a highly conserved surface-exposed patch on the beta1 domain of RNAP that is required by Mfd for the initial step of transcription-coupled repair, the enhancement of roadblock repression and the reactivation of backtracked transcription complexes.
引用
收藏
页码:755 / 764
页数:10
相关论文
共 44 条
[1]   Molecular mechanism of transcription inhibition by peptide antibiotic microcin J25 [J].
Adelman, K ;
Yuzenkova, J ;
La Porta, A ;
Zenkin, N ;
Lee, J ;
Lis, JT ;
Borukhov, S ;
Wang, MD ;
Severinov, K .
MOLECULAR CELL, 2004, 14 (06) :753-762
[2]   Structural basis for transcription regulation by alarmone ppGpp [J].
Artsimovitch, I ;
Patlan, V ;
Sekine, SI ;
Vassylyeva, MN ;
Hosaka, T ;
Ochi, K ;
Yokoyama, S ;
Vassylyev, DG .
CELL, 2004, 117 (03) :299-310
[3]   The Mfd protein of Bacillus subtilis 168 is involved in both transcription-coupled DNA repair and DNA recombination [J].
Ayora, S ;
Rojo, F ;
Ogasawara, N ;
Nakai, S ;
Alonso, JC .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 256 (02) :301-318
[4]   RNA polymerase holoenzyme: structure, function and biological implications [J].
Borukhov, S ;
Nudler, E .
CURRENT OPINION IN MICROBIOLOGY, 2003, 6 (02) :93-100
[5]   TRANSCRIPT CLEAVAGE FACTORS FROM ESCHERICHIA-COLI [J].
BORUKHOV, S ;
SAGITOV, V ;
GOLDFARB, A .
CELL, 1993, 72 (03) :459-466
[6]   A DNA translocation motif in the bacterial transcription-repair coupling factor, Mfd [J].
Chambers, AL ;
Smith, AJ ;
Savery, NJ .
NUCLEIC ACIDS RESEARCH, 2003, 31 (22) :6409-6418
[7]   Multiple sequence alignment with the Clustal series of programs [J].
Chenna, R ;
Sugawara, H ;
Koike, T ;
Lopez, R ;
Gibson, TJ ;
Higgins, DG ;
Thompson, JD .
NUCLEIC ACIDS RESEARCH, 2003, 31 (13) :3497-3500
[8]   LAC REPRESSOR BLOCKS TRANSCRIBING RNA-POLYMERASE AND TERMINATES TRANSCRIPTION [J].
DEUSCHLE, U ;
GENTZ, R ;
BUJARD, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (12) :4134-4137
[9]   RNA polymerase: Structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II [J].
Ebright, RH .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 304 (05) :687-698
[10]   IMPROVED METHOD FOR HIGH-EFFICIENCY TRANSFORMATION OF INTACT YEAST-CELLS [J].
GIETZ, D ;
STJEAN, A ;
WOODS, RA ;
SCHIESTL, RH .
NUCLEIC ACIDS RESEARCH, 1992, 20 (06) :1425-1425