New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications

被引:15
作者
Abubakar, Auwal Bala [1 ,2 ,3 ]
Kumam, Poom [1 ,4 ,6 ]
Ibrahim, Abdulkarim Hassan [1 ]
Chaipunya, Parin [4 ,5 ]
Rano, Sadiya Ali [2 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, Fixed Point Res Lab,Fixed Point Theory & Applicat, 126 Pracha Uthit Rd,Bang Mod,Thung Khru, Bangkok 10140, Thailand
[2] Bayero Univ Kano, Fac Phys Sci, Dept Math Sci, Kano 700241, Nigeria
[3] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Ga Rankuwa, South Africa
[4] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, 126 Pracha Uthit Rd,Bang Mod,Thung Khru, Bangkok 10140, Thailand
[5] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE, NCAO Res Ctr,Fixed Point Theory & Applicat Res Grp, 126 Pracha Uthit Rd,Bang Mod,Thung Khru, Bangkok 10140, Thailand
[6] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
关键词
Non-linear equations; Conjugate gradient; Projection map; Signal recovery; PROJECTION METHOD; ALGORITHMS; SYSTEMS; SPARSE; SIGNAL;
D O I
10.1016/j.matcom.2021.07.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present a new hybrid spectral-conjugate gradient (SCG) algorithm for finding approximate solutions to nonlinear monotone operator equations. The hybrid conjugate gradient parameter has the Polak-Ribiere-Polyak (PRP), Dai- Yuan (DY), Hestenes-Stiefel (HS) and Fletcher-Reeves (FR) as special cases. Moreover, the spectral parameter is selected such that the search direction has the descent property. Also, the search directions are bounded and the sequence of iterates generated by the new hybrid algorithm converge globally. Furthermore, numerical experiments were conducted on some benchmark nonlinear monotone operator equations to assess the efficiency of the proposed algorithm. Finally, the algorithm is shown to have the ability to recover disturbed signals. (c) 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:670 / 683
页数:14
相关论文
共 42 条
[1]  
Abubakar A.B., 2020, Appl. Anal. Optim., V4, P1
[2]   FR-type algorithm for finding approximate solutions to nonlinear monotone operator equations [J].
Abubakar, Auwal Bala ;
Muangchoo, Kanikar ;
Ibrahim, Abdulkarim Hassan ;
Abubakar, Jamilu ;
Rano, Sadiya Ali .
ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (02) :261-270
[3]  
Abubakar AB, 2021, JPN J IND APPL MATH, V38, P805, DOI [10.1007/s13160-021-00462-2, 10.1080/15440478.2021.1889436]
[4]   A New Three-Term Hestenes-Stiefel Type Method for Nonlinear Monotone Operator Equations and Image Restoration [J].
Abubakar, Auwal Bala ;
Muangchoo, Kanikar ;
Ibrahim, Abdulkarim Hassan ;
Muhammad, Abubakar Bakoji ;
Jolaoso, Lateef Olakunle ;
Aremu, Kazeem Olalekan .
IEEE ACCESS, 2021, 9 :18262-18277
[5]   Solving nonlinear monotone operator equations via modified SR1 update [J].
Abubakar, Auwal Bala ;
Sabi'u, Jamilu ;
Kumam, Poom ;
Shah, Abdullah .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 67 (1-2) :343-373
[6]   Derivative-free HS-DY-type method for solving nonlinear equations and image restoration [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Ibrahim, Abdulkarim Hassan ;
Rilwan, Jewaidu .
HELIYON, 2020, 6 (11)
[7]   A Barzilai-Borwein gradient projection method for sparse signal and blurred image restoration [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Mohammad, Hassan ;
Awwal, Aliyu Muhammed .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (11) :7266-7285
[8]   A note on the spectral gradient projection method for nonlinear monotone equations with applications [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Mohammad, Hassan .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02)
[9]   A Modified Fletcher-Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications [J].
Abubakar, Auwal Bala ;
Kumam, Poom ;
Mohammad, Hassan ;
Awwal, Aliyu Muhammed ;
Sitthithakerngkiet, Kanokwan .
MATHEMATICS, 2019, 7 (08)
[10]   A descent Dai-Liao conjugate gradient method for nonlinear equations [J].
Abubakar, Auwal Bala ;
Kumam, Poom .
NUMERICAL ALGORITHMS, 2019, 81 (01) :197-210