Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks

被引:51
作者
Seidl, Philipp [1 ]
Renz, Philipp [1 ]
Dyubankova, Natalia [2 ]
Neves, Paulo [2 ]
Verhoeven, Jonas [2 ]
Wegner, Jorg K. [3 ]
Segler, Marwin [4 ]
Hochreiter, Sepp [1 ]
Klambauer, Gunter [1 ]
机构
[1] Johannes Kepler Univ Linz, ELLIS Unit Linz, Lit AI Lab, Inst Machine Learning, A-4040 Linz, Austria
[2] Janssen Pharmaceut NV, High Dimens Biol & Discovery Data Sci, Janssen Res & Dev, B-2340 Beerse, Belgium
[3] Janssen Res & Dev LLC, In Silico Discovery & External Innovat ISD & EI, Cambridge, MA 02142 USA
[4] Microsoft Res, Cambridge CB1 2FB, England
关键词
NEURAL-NETWORKS; TRANSFORMER;
D O I
10.1021/acs.jcim.1c01065
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Finding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce a template-based single-step retrosynthesis model based on Modern Hopfield Networks, which learn an encoding of both molecules and reaction templates in order to predict the relevance of templates for a given molecule. The template representation allows generalization across different reactions and significantly improves the performance of template relevance prediction, especially for templates with few or zero training examples. With inference speed up to orders of magnitude faster than baseline methods, we improve or match the state-of-the-art performance for top-k exact match accuracy for k >= 3 in the retrosynthesis benchmark USPTO-50k. Code to reproduce the results is available at github.com/ml-jku/mhn-react.
引用
收藏
页码:2111 / 2120
页数:10
相关论文
共 85 条
[1]   STORAGE CAPACITY OF GENERALIZED NETWORKS [J].
ABBOTT, LF ;
ARIAN, Y .
PHYSICAL REVIEW A, 1987, 36 (10) :5091-5094
[2]  
[Anonymous], 2016, Advances in Neural Information Processing Systems
[3]  
Ba J. L., 2016, Advances in Neural Information Processing Systems (NeurIPS), P1
[4]   NUMBER OF STABLE POINTS FOR SPIN-GLASSES AND NEURAL NETWORKS OF HIGHER ORDERS [J].
BALDI, P ;
VENKATESH, SS .
PHYSICAL REVIEW LETTERS, 1987, 58 (09) :913-916
[5]   Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification [J].
Baylon, Javier L. ;
Cilfone, Nicholas A. ;
Gulcher, Jeffrey R. ;
Chittenden, Thomas W. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (02) :673-688
[6]  
Bjerrum E. J., 2020, ARTIFICIAL APPLICABI, DOI [10.26434/chemrxiv.12249458.v1, DOI 10.26434/CHEMRXIV.12249458.V1]
[7]  
Bradshaw J., ARXIV201211522
[8]  
Bradshaw J, 2019, ADV NEUR IN, V32
[9]  
Caputo B, 2002, LECT NOTES COMPUT SC, V2415, P51
[10]  
Chen B., 2020, INT C MACHINE LEARNI, P1608