On structural physical approximations and entanglement breaking maps

被引:33
作者
Augusiak, R. [1 ]
Bae, J. [2 ]
Czekaj, L. [3 ,4 ]
Lewenstein, M. [1 ,5 ]
机构
[1] ICFO, Castelldefels 08860, Spain
[2] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea
[3] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80952 Gdansk, Poland
[4] Natl Quantum Informat Ctr Gdansk, PL-81824 Sopot, Poland
[5] ICREA, Barcelona 08010, Spain
关键词
POSITIVE LINEAR-MAPS; MATRIX ALGEBRAS; SEPARABILITY CRITERION; REDUCTION CRITERION; CHANNELS; SYSTEMS; STATES; FORMS;
D O I
10.1088/1751-8113/44/18/185308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Very recently, a conjecture saying that the so-called structural physical approximations (SPAs) to optimal positive maps (optimal entanglement witnesses) give entanglement breaking (EB) maps (separable states) has been posed (Korbicz et al 2008 Phys. Rev. A 78 062105). The main purpose of this contribution is to explore this subject. First, we extend the set of entanglement witnesses supporting the conjecture. Then, we ask whether SPAs constructed from other than the depolarizing channel maps also lead to EB maps and show that in general this is not the case. On the other hand, we prove an interesting fact that for any positive map Lambda, there exists an EB channel Phi such that the SPA of Lambda constructed with the aid of Phi is again an EB channel. Finally, we ask similar questions in the case of continuous variable systems. We provide a simple way of constructing SPA and prove that in the case of the transposition map it gives the EB channel.
引用
收藏
页数:21
相关论文
共 46 条
[1]  
ACIN A, 2009, COMMUNICATION
[2]   Direct estimation of functionals of density operators by local operations and classical communication [J].
Alves, CM ;
Horodecki, P ;
Oi, DKL ;
Kwek, LC ;
Ekert, AK .
PHYSICAL REVIEW A, 2003, 68 (03)
[3]  
[Anonymous], 2005, Introductory Quantum Optics
[4]   Universal observable detecting all two-qubit entanglement and determinant-based separability tests [J].
Augusiak, Remigiusz ;
Demianowicz, Maciej ;
Horodecki, Pawel .
PHYSICAL REVIEW A, 2008, 77 (03)
[5]   Optimal entanglement criterion for mixed quantum states [J].
Breuer, Heinz-Peter .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[6]   Reflections upon separability and distillability [J].
Bruss, D ;
Cirac, JI ;
Horodecki, P ;
Hulpke, F ;
Kraus, B ;
Lewenstein, M ;
Sanpera, A .
JOURNAL OF MODERN OPTICS, 2002, 49 (08) :1399-1418
[7]   Optimal realization of the transposition maps [J].
Buscemi, F ;
D'Ariano, GM ;
Perinotti, P ;
Sacchi, MF .
PHYSICS LETTERS A, 2003, 314 (5-6) :374-379
[8]   Noiseless quantum circuits for the Peres separability criterion [J].
Carteret, HA .
PHYSICAL REVIEW LETTERS, 2005, 94 (04)
[9]   Reduction criterion for separability [J].
Cerf, NJ ;
Adami, C ;
Gingrich, RM .
PHYSICAL REVIEW A, 1999, 60 (02) :898-909
[10]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290