GEOMETRY OF REGULAR HESSENBERG VARIETIES

被引:12
作者
Abe, Hiraku [1 ]
Fujita, Naoki [2 ]
Zeng, Haozhi [3 ]
机构
[1] Osaka Prefecture Univ, Fac Liberal Arts & Sci, Naka Ku, 1-1 Gakuen Cho, Sakai, Osaka 5998531, Japan
[2] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
EQUIVARIANT COHOMOLOGY; RINGS; IDEALS;
D O I
10.1007/s00031-020-09554-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a complex semisimple Lie algebra. For a regular element x in g and a Hessenberg space H subset of g, we consider a regular Hessenberg variety X(x, H) in the ag variety associated with g. We take a Hessenberg space so that X(x, H) is irreducible, and show that the higher cohomology groups of the structure sheaf of X(x, H) vanish. We also study the flat family of regular Hessenberg varieties, and prove that the scheme-theoretic fibers over the closed points are reduced. We include applications of these results as well.
引用
收藏
页码:305 / 333
页数:29
相关论文
共 46 条
[1]  
Abe H, 2019, J COMB, V10, P27
[2]   Geometry of Hessenberg varieties with applications to Newton-Okounkov bodies [J].
Abe, Hiraku ;
DeDieu, Lauren ;
Galetto, Federico ;
Harada, Megumi .
SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (03) :2129-2163
[3]   The Cohomology Rings of Regular Nilpotent Hessenberg Varieties in Lie Type A [J].
Abe, Hiraku ;
Harada, Megumi ;
Horiguchi, Tatsuya ;
Masuda, Mikiya .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (17) :5316-5388
[4]   Hessenberg varieties and hyperplane arrangements [J].
Abe, Takuro ;
Horiguchi, Tatsuya ;
Masuda, Mikiya ;
Murai, Satoshi ;
Sato, Takashi .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 :241-286
[5]  
ALTMAN A, 1970, LECT NOTES MATH, V146
[6]   Schubert polynomials and classes of Hessenberg varieties [J].
Anderson, Dave ;
Tymoczko, Julianna .
JOURNAL OF ALGEBRA, 2010, 323 (10) :2605-2623
[7]  
Atiyah M.F., 1969, Introduction to Commutative Algebra
[8]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[9]   THE PETERSON VARIETY AND THE WONDERFUL COMPACTIFICATION [J].
Balibanu, Ana .
REPRESENTATION THEORY, 2017, 21 :132-150
[10]  
BERLINE N, 1982, CR ACAD SCI I-MATH, V295, P539