Manipulation of Sulfur Vacancies and Dislocations in Mn0.3Cd0.7S Nanorods with Modification of Co2P toward Photocatalytic H2 Evolution

被引:11
作者
Han, Yanling [1 ]
Feng, Xiao [2 ]
Gan, Bin [2 ]
He, Jiari [3 ]
Feng, Jianyong [1 ]
Zhao, Minyue [1 ]
Li, Zhaosheng [1 ]
Zou, Zhigang [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Peoples R China
[3] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
dislocations; H-2; evolution; Mn0.3Cd0.7S; photocatalysis; sulfur vacancies; HYDROGEN EVOLUTION; CHARGE SEPARATION; SOLID-SOLUTIONS; EFFICIENT; HETEROSTRUCTURE; NI2P;
D O I
10.1002/solr.202200516
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Defect engineering and cocatalyst loading are effective methods to modify semiconductors to improve their catalytic activity and stability. Herein, sulfur vacancies and dislocations in Mn0.3Cd0.7S nanorods are manipulated by regulating the amount of the sulfur source. After the introduction of Co2P, the maximum H-2 production rate for Co2P/Mn0.3Cd0.7S can reach up to 245.3 mu mol h(-1), approximate to 2,700 times higher than that of Mn0.3Cd0.7S at the optimal contents of sulfur vacancies and dislocations. The sulfur vacancies serve as the trap sites of electrons and the dislocations might create new transfer channels for carriers, inducing the improvement of catalytic activity and stability.
引用
收藏
页数:10
相关论文
共 55 条
[1]   A STUDY OF A NUMBER OF MIXED TRANSITION-METAL OXIDE SPINELS USING X-RAY PHOTOELECTRON-SPECTROSCOPY [J].
ALLEN, GC ;
HARRIS, SJ ;
JUTSON, JA ;
DYKE, JM .
APPLIED SURFACE SCIENCE, 1989, 37 (01) :111-134
[2]   Dislocation-Mediated Conductivity in Oxides: Progress, Challenges, and Opportunities [J].
Armstrong, Micah D. ;
Lan, Kai-Wei ;
Guo, Yiwen ;
Perry, Nicola H. .
ACS NANO, 2021, 15 (06) :9211-9221
[3]   Mechanochemical Synthesis of Sulfur Quantum Dots for Cellular Imaging [J].
Arshad, Farwa ;
Sk, Md Palashuddin ;
Maurya, Santosh K. ;
Siddique, Hifzur R. .
ACS APPLIED NANO MATERIALS, 2021, 4 (04) :3339-3344
[4]   In Situ Photosynthesis of an MAPbI3/CoP Hybrid Heterojunction for Efficient Photocatalytic Hydrogen Evolution [J].
Cai, Cheng ;
Teng, Yuan ;
Wu, Jian-Hao ;
Li, Jun-Yan ;
Chen, Hong-Yan ;
Chen, Jing-Hua ;
Kuang, Dai-Bin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (35)
[5]   Effect of reaction atmosphere on photodeposition of Pt nanoparticles and photocatalytic hydrogen evolution from SrTiO3 suspension system [J].
Chen, Haidong ;
Zhang, Feng ;
Sun, Xianwen ;
Zhang, Weifeng ;
Li, Guoqiang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (10) :5331-5336
[6]   Selectively enhanced gas-sensing performance to n-butanol based on uniform CdO-decorated porous ZnO nanobelts [J].
Chen, Xu-Xiu ;
Chen, Li ;
Li, Gang ;
Cai, Liu-Xin ;
Miao, Guang-Ya ;
Guo, Zheng ;
Meng, Fan-Li .
SENSORS AND ACTUATORS B-CHEMICAL, 2021, 334
[7]   Remarkable oxygen evolution by Co-doped ZnO nanorods and visible light [J].
Chen, Zheng ;
Fang, Yuanxing ;
Wang, Long ;
Chen, Xiaoxiao ;
Lin, Wei ;
Wang, Xinchen .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 296
[8]   Thermal-assisted photocatalytic H2 production over sulfur vacancy-rich Co0.85Se/Mn0.3Cd0.7S nanorods under visible light [J].
Cheng, Chuchu ;
Wang, Jianing ;
Guo, Xiaosheng ;
Xing, Fangshu ;
Huang, Caijin ;
Song, Mingxia .
APPLIED SURFACE SCIENCE, 2021, 557
[9]   Synergy of nitrogen vacancies and partially broken hydrogen bonds in graphitic carbon nitride for superior photocatalytic hydrogen evolution under visible light [J].
Dang, Haifeng ;
Mao, Suhua ;
Li, Qi ;
Li, Mengyun ;
Shao, Mengmeng ;
Wang, Wenlong ;
Liu, Quanbing .
CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (16) :5032-5044
[10]   Effect of aspect ratio on photocatalytic performance of hexagonal ZnO nanorods [J].
Das, Abinash ;
Nair, Ranjith G. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 817