Error Analysis of a Projection Method for the Navier-Stokes Equations With Coriolis Force

被引:7
作者
Olshanskii, Maxim A. [1 ]
Sokolov, Andriy [2 ]
Turek, Stefan [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119899, Russia
[2] Dortmund Univ Technol, Inst Appl Math, D-44227 Dortmund, Germany
基金
俄罗斯基础研究基金会;
关键词
Navier-Stokes equations; Coriolis force; projection method; error estimate; INCOMPRESSIBLE VISCOUS-FLOW; APPROXIMATION;
D O I
10.1007/s00021-009-0299-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a projection method for the Navier-Stokes equations with Coriolis force is considered. This time-stepping algorithm takes into account the Coriolis terms both on prediction and correction steps. We study the accuracy of its semi-discretized form and show that the velocity is weakly first-order approximation and the pressure is weakly order 1/2 approximation.
引用
收藏
页码:485 / 502
页数:18
相关论文
共 20 条
[1]  
AHARONI J, 1972, LECT MECH
[2]  
[Anonymous], NUMERICAL MATH ADV A
[3]  
[Anonymous], 1985, APPL MATH SCI
[4]  
[Anonymous], 1999, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach
[5]   ON CONVERGENCE OF DISCRETE APPROXIMATIONS TO NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :341-&
[6]  
Dahong C., 1997, NUMERISCHE SIMULATIO, VXVII
[7]   A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies:: Application to particulate flow [J].
Glowinski, R ;
Pan, TW ;
Hesla, TI ;
Joseph, DD ;
Périaux, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (02) :363-426
[8]   An overview of projection methods for incompressible flows [J].
Guermond, J. L. ;
Minev, P. ;
Shen, Jie .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (44-47) :6011-6045
[9]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .1. REGULARITY OF SOLUTIONS AND 2ND-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :275-311
[10]  
Olshanskii MA, 1999, NUMER LINEAR ALGEBR, V6, P353, DOI 10.1002/(SICI)1099-1506(199907/08)6:5<353::AID-NLA169>3.0.CO