A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding

被引:90
|
作者
Nasiri, Elahe [1 ]
Berahmand, Kamal [2 ]
Rostami, Mehrdad [3 ]
Dabiri, Mohammad [4 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Informat Technol & Commun, Tabriz, Iran
[2] Queensland Univ Technol, Sch Comp Sci, Dept Sci & Engn, Brisbane, Qld, Australia
[3] Univ Kurdistan, Dept Comp Engn, Sanandaj, Iran
[4] Univ Kurdistan, Dept Plant Biotechnol, Sanandaj, Iran
关键词
Protein-protein interaction network; Link prediction; Graph embedding; Random walk; Feature selection; SEQUENCE;
D O I
10.1016/j.compbiomed.2021.104772
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The prediction of interactions in protein networks is very critical in various biological processes. In recent years, scientists have focused on computational approaches to predict the interactions of proteins. In protein-protein interaction (PPI) networks, each protein is accompanied by various features, including amino acid sequence, subcellular location, and protein domains. Embedding-based methods have been widely applied for many network analysis tasks, such as link prediction. The Deepwalk algorithm is one of the most popular graph embedding methods that capture the network structure using pure random walking. Here in this paper, we treat the protein-protein interaction prediction problem as a link prediction in attributed networks, and we use an attributed embedding approach to predict the interactions between proteins in the PPI network. In particular, the present paper seeks to present a modified version of Deepwalk based on feature selection for solving link prediction in the protein-protein interaction, which will benefit both network structure and protein features. More specifically the feature selection step consists of two distinct parts. First, a set of relevant features are selected from the original feature set, such that the dimensionality of features is reduced. Second, in the selected set of features, each feature is assigned with a weight based on its significance and therefore the contribution of each feature is distinguished from others. In this method, the new random walk model for link prediction will be introduced by integrating network structure and protein features, based on the assumption that two nodes on the network will be linked since they are nearby in the network. In order to justify the proposal, the authors carry out many experiments on protein-protein interaction networks for comparison with the state-of-the-art network embedding methods. The experimental results from the graphs indicate that our proposed approach is more capable compared to other link prediction approaches and increases the accuracy of prediction.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding
    Nasiri, Elahe
    Berahmand, Kamal
    Rostami, Mehrdad
    Dabiri, Mohammad
    Computers in Biology and Medicine, 2021, 137
  • [2] A novel link prediction algorithm for reconstructing protein-protein interaction networks by topological similarity
    Lei, Chengwei
    Ruan, Jianhua
    BIOINFORMATICS, 2013, 29 (03) : 355 - 364
  • [3] Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
    Yang, Fang
    Fan, Kunjie
    Song, Dandan
    Lin, Huakang
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [4] Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
    Fang Yang
    Kunjie Fan
    Dandan Song
    Huakang Lin
    BMC Bioinformatics, 21
  • [5] Better Link Prediction for Protein-Protein Interaction Networks
    Yuen, Ho Yin
    Jansson, Jesper
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 53 - 60
  • [6] Spectral clustering on protein-protein interaction networks via constructing affinity matrix using attributed graph embedding
    Berahmand, Kamal
    Nasiri, Elahe
    Mohammadiani, Rojiar Pir
    Li, Yuefeng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 138
  • [7] Protein Complex Prediction in Large Ontology Attributed Protein-Protein Interaction Networks
    Zhang, Yijia
    Lin, Hongfei
    Yang, Zhihao
    Wang, Jian
    Li, Yanpeng
    Xu, Bo
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (03) : 729 - 741
  • [8] Prediction of protein-protein interaction using graph neural networks
    Jha, Kanchan
    Saha, Sriparna
    Singh, Hiteshi
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Protein features fusion using attributed network embedding for predicting protein-protein interaction
    Cao, Mei-Yuan
    Zainudin, Suhaila
    Daud, Kauthar Mohd
    BMC GENOMICS, 2024, 25 (01):
  • [10] Graph kernels for disease outcome prediction from protein-protein interaction networks
    Borgwardt, Karsten M.
    Kriegel, Hans-Peter
    Vishwanathan, S. V. N.
    Schraudolph, Nicol N.
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2007, 2007, : 4 - +