Approximation of Space-Time Fractional Equations

被引:0
作者
Capitanelli, Raffaela [1 ]
D'Ovidio, Mirko [1 ]
机构
[1] Sapienza Univ Rome, Dept Basic & Appl Sci Engn, Via A Scarpa 10, I-00161 Rome, Italy
关键词
space-time fractional equations; Dirichlet forms; asymptotics; CONVERGENCE;
D O I
10.3390/fractalfract5030071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to provide approximation results for space-time non-local equations with general non-local (and fractional) operators in space and time. We consider a general Markov process time changed with general subordinators or inverses to general subordinators. Our analysis is based on Bernstein symbols and Dirichlet forms, where the symbols characterize the time changes, and the Dirichlet forms characterize the Markov processes.
引用
收藏
页数:9
相关论文
共 50 条
[31]   A fast second-order difference scheme for the space-time fractional equation [J].
Xu, Weiyan ;
Sun, Hong .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) :1326-1342
[32]   Space-time finite element approximation of the Biot poroelasticity system with iterative coupling [J].
Bause, M. ;
Radu, F. A. ;
Koecher, U. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 :745-768
[33]   Mixed time discontinuous space-time finite element method for convection diffusion equations [J].
Yang Liu ;
Hong Li ;
Siriguleng He .
Applied Mathematics and Mechanics, 2008, 29 :1579-1586
[34]   Mixed time discontinuous space-time finite element method for convection diffusion equations [J].
Liu Yang ;
Li Hong ;
He Siriguleng .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (12) :1579-1586
[35]   THE NUMERICAL SOLUTION OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION INVOLVING THE CAPUTO-KATUGAMPOLA FRACTIONAL DERIVATIVE [J].
Bouchama, Kaouther ;
Arioua, Yacine ;
Merzougui, Abdelkrim .
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2022, 12 (03) :621-636
[36]   Galerkin finite element approximation of symmetric space-fractional partial differential equations [J].
Zhang, H. ;
Liu, F. ;
Anh, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2534-2545
[37]   Numerical solution of the space-time fractional diffusion equation based on fractional reproducing kernel collocation method [J].
Rui Sun ;
Jiabao Yang ;
Huanmin Yao .
Calcolo, 2023, 60
[38]   Numerical solution of the space-time fractional diffusion equation based on fractional reproducing kernel collocation method [J].
Sun, Rui ;
Yang, Jiabao ;
Yao, Huanmin .
CALCOLO, 2023, 60 (02)
[39]   A CHEBYSHEV PSEUDOSPECTRAL METHOD TO SOLVE THE SPACE-TIME TEMPERED FRACTIONAL DIFFUSION EQUATION [J].
Hanert, Emmanuel ;
Piret, Cecile .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (04) :A1797-A1812
[40]   Approximation of Hamilton-Jacobi Equations with the Caputo Time-Fractional Derivative [J].
Camilli, Fabio ;
Duisembay, Serikbolsyn .
MINIMAX THEORY AND ITS APPLICATIONS, 2020, 5 (02) :199-220