Approximation of Space-Time Fractional Equations

被引:0
作者
Capitanelli, Raffaela [1 ]
D'Ovidio, Mirko [1 ]
机构
[1] Sapienza Univ Rome, Dept Basic & Appl Sci Engn, Via A Scarpa 10, I-00161 Rome, Italy
关键词
space-time fractional equations; Dirichlet forms; asymptotics; CONVERGENCE;
D O I
10.3390/fractalfract5030071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to provide approximation results for space-time non-local equations with general non-local (and fractional) operators in space and time. We consider a general Markov process time changed with general subordinators or inverses to general subordinators. Our analysis is based on Bernstein symbols and Dirichlet forms, where the symbols characterize the time changes, and the Dirichlet forms characterize the Markov processes.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Numerical solution of ?-Hilfer fractional Black-Scholes equations via space-time spectral collocation method [J].
Mohammadizadeh, F. ;
Georgiev, S. G. ;
Rozza, G. ;
Tohidi, E. ;
Shateyi, S. .
ALEXANDRIA ENGINEERING JOURNAL, 2023, 71 :131-145
[22]   Nonlinear dissipative wave equations with space-time dependent potential [J].
Khader, Maisa .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (12) :3945-3963
[23]   Point vortex approximation for 2D Navier-Stokes equations driven by space-time white noise [J].
Flandoli, Franco ;
Luo, Dejun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
[24]   SPACE-TIME APPROXIMATION OF STOCHASTIC p-LAPLACE-TYPE SYSTEMS [J].
Breit, Dominic ;
Hofmanova, Martina ;
Loisel, Sebastien .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) :2218-2236
[25]   Finite difference approximations for space-time fractional partial differential equation [J].
Zhang, Y. .
JOURNAL OF NUMERICAL MATHEMATICS, 2009, 17 (04) :319-326
[26]   Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation [J].
Mahmoud, Elsayed, I ;
Aleroev, Temirkhan S. .
MATHEMATICS, 2022, 10 (17)
[27]   Space-Time Methods Based on Isogeometric Analysis for Time-fractional Schrodinger Equation [J].
Ge, Ang ;
Shen, Jinye ;
Vong, Seakweng .
JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (03)
[28]   Efficient space-time adaptivity for parabolic evolution equations using wavelets in time and finite elements in space [J].
van Venetie, Raymond ;
Westerdiep, Jan .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (01)
[29]   Numerical Schemes for Time-Space Fractional Vibration Equations [J].
Zhang, Jingna ;
Aleroev, Temirkhan S. ;
Tang, Yifa ;
Huang, Jianfei .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2021, 13 (04) :806-826
[30]   Mixed time discontinuous space-time finite element method for convection diffusion equations [J].
刘洋 ;
李宏 ;
何斯日古楞 .
AppliedMathematicsandMechanics(EnglishEdition), 2008, (12) :1579-1586