Approximation of Space-Time Fractional Equations

被引:0
|
作者
Capitanelli, Raffaela [1 ]
D'Ovidio, Mirko [1 ]
机构
[1] Sapienza Univ Rome, Dept Basic & Appl Sci Engn, Via A Scarpa 10, I-00161 Rome, Italy
关键词
space-time fractional equations; Dirichlet forms; asymptotics; CONVERGENCE;
D O I
10.3390/fractalfract5030071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to provide approximation results for space-time non-local equations with general non-local (and fractional) operators in space and time. We consider a general Markov process time changed with general subordinators or inverses to general subordinators. Our analysis is based on Bernstein symbols and Dirichlet forms, where the symbols characterize the time changes, and the Dirichlet forms characterize the Markov processes.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] New exact wave solutions to the space-time fractional-coupled Burgers equations and the space-time fractional foam drainage equation
    Islam, M. Nurul
    Akbar, M. Ali
    COGENT PHYSICS, 2018, 5
  • [22] Time-Changed Processes Governed by Space-Time Fractional Telegraph Equations
    D'ovidio, Mirko
    Orsingher, Enzo
    Toaldo, Bruno
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (06) : 1009 - 1045
  • [23] Fractional quasi AKNS-technique for nonlinear space-time fractional evolution equations
    Abdel-Salam, Emad A. -B.
    Mourad, Mohamed F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 5953 - 5968
  • [24] The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equations
    Zhang, Hongmei
    Shen, Shujun
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (04) : 571 - 585
  • [25] Space-Time Fractional Stochastic Equations on Regular Bounded Open Domains
    Vo V. Anh
    Nikolai N. Leonenko
    María D. Ruiz-Medina
    Fractional Calculus and Applied Analysis, 2016, 19 : 1161 - 1199
  • [26] New approximations of space-time fractional Fokker-Planck equations
    Singh, Brajesh Kumar
    Kumar, Anil
    Gupta, Mukesh
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2023, 11 (03): : 495 - 521
  • [27] REGULARITY OF SOLUTIONS TO SPACE-TIME FRACTIONAL WAVE EQUATIONS: A PDE APPROACH
    Otarola, Enrique
    Salgado, Abner J.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) : 1262 - 1293
  • [28] Approximate Controllability from the Exterior of Space-Time Fractional Wave Equations
    Carole Louis-Rose
    Mahamadi Warma
    Applied Mathematics & Optimization, 2021, 83 : 207 - 250
  • [29] New structures for the space-time fractional simplified MCH and SRLW equations
    Ali, Khalid K.
    Nuruddeen, R. I.
    Raslan, K. R.
    CHAOS SOLITONS & FRACTALS, 2018, 106 : 304 - 309
  • [30] FRACTIONAL SPACE-TIME VARIATIONAL FORMULATIONS OF (NAVIER-) STOKES EQUATIONS
    Schwab, Christoph
    Stevenson, Rob
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) : 2442 - 2467