Approximation of Space-Time Fractional Equations

被引:0
|
作者
Capitanelli, Raffaela [1 ]
D'Ovidio, Mirko [1 ]
机构
[1] Sapienza Univ Rome, Dept Basic & Appl Sci Engn, Via A Scarpa 10, I-00161 Rome, Italy
关键词
space-time fractional equations; Dirichlet forms; asymptotics; CONVERGENCE;
D O I
10.3390/fractalfract5030071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to provide approximation results for space-time non-local equations with general non-local (and fractional) operators in space and time. We consider a general Markov process time changed with general subordinators or inverses to general subordinators. Our analysis is based on Bernstein symbols and Dirichlet forms, where the symbols characterize the time changes, and the Dirichlet forms characterize the Markov processes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Numerical Approximation of Space-Time Fractional Parabolic Equations
    Bonito, Andrea
    Lei, Wenyu
    Pasciak, Joseph E.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 679 - 705
  • [2] Numerical approximation of the space-time fractional diffusion problem
    Pellegrino, Enza
    Pitolli, Francesca
    Sorgentone, Chiara
    IFAC PAPERSONLINE, 2024, 58 (12): : 390 - 394
  • [3] Numerical approximation of Atangana-Baleanu Caputo derivative for space-time fractional diffusion equations
    Wali, Mubashara
    Arshad, Sadia
    Eldin, Sayed M.
    Siddique, Imran
    AIMS MATHEMATICS, 2023, 8 (07): : 15129 - 15147
  • [4] Space-time hp-approximation of parabolic equations
    Devaud, Denis
    Schwab, Christoph
    CALCOLO, 2018, 55 (03)
  • [5] Space-time finite element approximation of Boussinesq equations
    Grasselli, M.
    Perotto, S.
    Saleri, F.
    East-West Journal of Numerical Mathematics, 1999, 7 (04): : 283 - 306
  • [6] Stochastic solution of space-time fractional diffusion equations
    Meerschaert, MM
    Benson, DA
    Scheffler, HP
    Baeumer, B
    PHYSICAL REVIEW E, 2002, 65 (04): : 4
  • [7] Strichartz estimates for space-time fractional Schrodinger equations
    Lee, Jin Bong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
  • [8] Space-time fractional stochastic partial differential equations
    Mijena, Jebessa B.
    Nane, Erkan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (09) : 3301 - 3326
  • [9] NUMERICAL SIMULATIONS FOR SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS
    Ling, Leevan
    Yamamoto, Masahiro
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2013, 10 (02)
  • [10] From the space-time fractional integral of the continuous time random walk to the space-time fractional diffusion equations, a short proof and simulation
    Abdel-Rehim, E. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 531