Classical Risk-Averse Control for a Finite-Horizon Borel Model

被引:6
作者
Chapman, Margaret P. [1 ]
Smith, Kevin M. [2 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G8, Canada
[2] Tufts Univ, Dept Civil & Environm Engn, Medford, MA 02155 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
基金
美国国家科学基金会;
关键词
Costs; Aerospace electronics; Trajectory; Extraterrestrial measurements; Random variables; Optimization; Optimal control; Stochastic optimal control; exponential utility; Markov processes; TIME MARKOV-PROCESSES; SENSITIVE CONTROL; DISCRETE-TIME;
D O I
10.1109/LCSYS.2021.3114126
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study a risk-averse optimal control problem for a finite-horizon Borel model, where a cumulative cost is assessed via exponential utility. The setting permits non-linear dynamics, non-quadratic costs, and continuous state and control spaces but is less general than the problem of optimizing an expected utility. Our contribution is to show the existence of an optimal risk-averse controller without using state space augmentation and therefore offer a simpler solution method from first principles compared to what is currently available in the literature.
引用
收藏
页码:1525 / 1530
页数:6
相关论文
共 44 条
  • [1] A VARIATIONAL FORMULA FOR RISK-SENSITIVE REWARD
    Anantharam, V.
    Borkar, V. S.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (02) : 961 - 988
  • [2] [Anonymous], 1996, Discrete-time Markov Control Processes: Basic Optimality Criteria
  • [3] Ash R., 1972, Probability and real analysis
  • [4] Asienkiewicz H., 2017, Applicationes Mathematicae (Warsaw), V44, P149
  • [5] Markov decision processes with recursive risk measures
    Baeuerle, Nicole
    Glauner, Alexander
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 296 (03) : 953 - 966
  • [6] More Risk-Sensitive Markov Decision Processes
    Baeuerle, Nicole
    Rieder, Ulrich
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2014, 39 (01) : 105 - 120
  • [7] Risk-awareness in multi-level building evacuation with smoke: Burj Khalifa case study
    Barreiro-Gomez, Julian
    Choutri, Salah Eddine
    Tembine, Hamidou
    [J]. AUTOMATICA, 2021, 129
  • [8] Bertsekas D., 1996, Stochastic optimal control: the discrete-time case, V5
  • [9] Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management
    Bielecki, T
    Hernández-Hernández, D
    Pliska, SR
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1999, 50 (02) : 167 - 188
  • [10] Discounted approximations in risk-sensitive average Markov cost chains with finite state space
    Blancas-Rivera, Ruben
    Cavazos-Cadena, Rolando
    Cruz-Suarez, Hugo
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2020, 91 (02) : 241 - 268