Increased Paracrine Immunomodulatory Potential of Mesenchymal Stromal Cells in Three-Dimensional Culture

被引:2
作者
Follin, Bjarke [1 ]
Juhl, Morten [1 ]
Cohen, Smadar [2 ]
Perdersen, Anders Elm [3 ]
Kastrup, Jens [1 ]
Ekblond, Annette [1 ]
机构
[1] Copenhagen Univ Hosp, Rigshosp, Ctr Heart, Cardiol Stem Cell Ctr, Copenhagen, Denmark
[2] Ben Gurion Univ Negev, Avram & Stella Goldstein Goren Dept Biotechnol &, Regenerat Med & Stem Cell Res Ctr, Beer Sheva, Israel
[3] Univ Copenhagen, Dept Immunol & Microbiol, Copenhagen, Denmark
关键词
STEM-CELLS; MYOCARDIAL-INFARCTION; INTERNATIONAL-SOCIETY; DENDRITIC CELLS; T-CELLS; ALGINATE; TISSUE; MACROPHAGES; SPHEROIDS; IDO;
D O I
10.1089/ten.teb.2015.0532
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Mesenchymal stromal/stem cells (MSCs) have been investigated extensively through the past years, proving to have great clinical therapeutic potential. In vitro cultivation of MSCs in three-dimensional (3D) culture systems, such as scaffolds, hydrogels, or spheroids, have recently gained attention for tissue engineering applications. Studies on MSC spheroids demonstrated that such cultivation increased the paracrine immunomodulatory potential of the MSCs, accompanied by phenotypic alterations. In this review, we gather results from recent experimental studies on the immunomodulatory abilities of MSCs when cultured as spheroids or in biomaterials like scaffolds or hydrogels compared to regular two-dimensional (2D) culture and show that alterations occurring to MSCs in spheroids also occur in MSCs in biomaterials. We provide a brief description of known mechanisms of MSC immunomodulatory capacity and how they are altered in the two 3D culture systems, together with phenotypic cellular changes. Based on the present knowledge, we highlight vital areas in need of further investigation. The impact of 3D environments on immunomodulation has great potential for tissue engineering and cellular therapy, and this is the first review to gather this knowledge with a comparison across different 3D environments.
引用
收藏
页码:322 / 329
页数:8
相关论文
共 53 条
[1]  
Amos PJ, 2010, TISSUE ENG PT A, V16, P1595, DOI 10.1089/ten.TEA.2009.0616
[2]   Mesenchymal stem cells: immune evasive, not immune privileged [J].
Ankrum, James A. ;
Ong, Joon Faii ;
Karp, Jeffrey M. .
NATURE BIOTECHNOLOGY, 2014, 32 (03) :252-260
[3]   Deconstructing the third dimension - how 3D culture microenvironments alter cellular cues [J].
Baker, Brendon M. ;
Chen, Christopher S. .
JOURNAL OF CELL SCIENCE, 2012, 125 (13) :3015-3024
[4]   Stiffening of human mesenchymal stem cell spheroid microenvironments induced by incorporation of gelatin microparticles [J].
Baraniak, Priya R. ;
Cooke, Marissa T. ;
Saeed, Rabbia ;
Kinney, Melissa A. ;
Fridley, Krista M. ;
McDevitt, Todd C. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2012, 11 :63-71
[5]   Encapsulated Mesenchymal Stromal Cells for In vivo Transplantation [J].
Barminko, Jeffrey ;
Kim, Jae Hwan ;
Otsuka, Seiji ;
Gray, Andrea ;
Schloss, Rene ;
Grumet, Martin ;
Yarmush, Martin L. .
BIOTECHNOLOGY AND BIOENGINEERING, 2011, 108 (11) :2747-2758
[6]   Dynamic Compaction of Human Mesenchymal Stem/Precursor Cells into Spheres Self-Activates Caspase-Dependent IL1 Signaling to Enhance Secretion of Modulators of Inflammation and Immunity (PGE2, TSG6, and STC1) [J].
Bartosh, Thomas J. ;
Yloestalo, Joni H. ;
Bazhanov, Nikolay ;
Kuhlman, Jessica ;
Prockop, Darwin J. .
STEM CELLS, 2013, 31 (11) :2443-2456
[7]   Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties [J].
Bartosh, Thomas J. ;
Ylostalo, Joni H. ;
Mohammadipoor, Arezoo ;
Bazhanov, Nikolay ;
Coble, Katie ;
Claypool, Kent ;
Lee, Ryang Hwa ;
Choi, Hosoon ;
Prockop, Darwin J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (31) :13724-13729
[8]   Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation [J].
Bernardo, Maria Ester ;
Fibbe, Willem E. .
CELL STEM CELL, 2013, 13 (04) :392-402
[9]   Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells [J].
Bhang, Suk Ho ;
Cho, Seung-Woo ;
La, Wan-Geun ;
Lee, Tae-Jin ;
Yang, Hee Seok ;
Sun, Ah-Young ;
Baek, Sang-Hong ;
Rhie, Jong-Won ;
Kim, Byung-Soo .
BIOMATERIALS, 2011, 32 (11) :2734-2747
[10]   Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) [J].
Bourin, Philippe ;
Bunnell, Bruce A. ;
Casteilla, Louis ;
Dominici, Massimo ;
Katz, Adam J. ;
March, Keith L. ;
Redl, Heinz ;
Rubin, J. Peter ;
Yoshimura, Kotaro ;
Gimble, Jeffrey M. .
CYTOTHERAPY, 2013, 15 (06) :641-648