On *-(σ, T)-Lie ideals of *-prime rings with derivation

被引:0
|
作者
Aydin, Neset [1 ]
Koc, Emine [2 ]
Golbasi, Oznur [2 ]
机构
[1] Canakkale 18 Mart Univ, Fac Arts & Sci, Dept Math, Canakkale, Turkey
[2] Cumhuriyet Univ, Fac Arts, Dept Math, Sivas, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2018年 / 47卷 / 05期
关键词
Derivations; (sigma; tau)-Lie Ideals; (*)-prime rings; involution;
D O I
10.15672/HJMS.2017.501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a (*)-prime ring with characteristic not 2, U be a nonzero (*)- (sigma, tau)-Lie ideal of R and d be a nonzero derivation of R. Suppose sigma, tau be two automorphisms of R such that sigma d = d sigma, tau d = d tau and * commutes with sigma, tau, d. In the present paper it is shown that if d(2)(U) = (0), then U subset of Z.
引用
收藏
页码:1240 / 1247
页数:8
相关论文
共 50 条
  • [1] On Lie Ideals and Automorphisms in Prime Rings
    Rehman, N.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 140 - 144
  • [2] SOME RESULTS ON PRIME RINGS AND (σ, τ) - LIE IDEALS
    Gueven, E.
    Soytuerk, M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2007, 36 (01): : 19 - 25
  • [3] On generalized (α,β)-derivations and Lie ideals of prime rings
    Sandhu, Gurninder S.
    Ali, Shakir
    Boua, Abdelkarim
    Kumar, Deepak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 499 - 513
  • [4] Generalized derivations on Lie ideals in prime rings
    Golbasi, Oznur
    Koc, Emine
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (01) : 23 - 28
  • [5] On Lie ideals of *-prime rings with generalized derivations
    Rehman, Nadeem Ur
    Al-Omary, Radwan Mohammed
    Ansari, Abu Zaid
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2015, 21 (01): : 19 - 26
  • [6] On Lie ideals and generalized (θ,φ)-derivations in prime rings
    Ashraf, M
    Ali, A
    Ali, S
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (08) : 2977 - 2985
  • [7] An identity on automorphisms of Lie ideals in prime rings
    Rehman, N.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 33 (02): : 118 - 127
  • [8] A NOTE ON AUTOMORPHISMS OF LIE IDEALS IN PRIME RINGS
    Davvaz, Bijan
    Raza, Mohd Arif
    MATHEMATICA SLOVACA, 2018, 68 (05) : 1223 - 1229
  • [9] ON LIE IDEALS AND GENERALIZED DERIVATIONS OF *-PRIME RINGS
    Huang, Shuliang
    Golbasi, Oznur
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 941 - 950
  • [10] NOTES ON ( sigma, tau)-DERIVATIONS OF LIE IDEALS IN PRIME RINGS
    Goelbasi, Oeznur
    Oguz, Seda
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (03): : 441 - 482