Global stability of an SEIQV epidemic model with general incidence rate

被引:5
作者
Yang, Yu [1 ]
Zhang, Cuimei [2 ]
Jiang, Xunyan [3 ]
机构
[1] Zhejiang Int Studies Univ, Sch Sci & Technol, Hangzhou 310012, Zhejiang, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Sci, Huainan 232001, Anhui, Peoples R China
[3] Xinyu Univ, Sch Math & Comp Sci, Xinyu 338004, Jiangxi, Peoples R China
关键词
Epidemic model; Lyapunov function; geometric approach; global stability; NONLINEAR INCIDENCE RATE; TOTAL POPULATION-SIZE; GEOMETRIC APPROACH; LYAPUNOV FUNCTION; DYNAMICS; SYSTEMS; SIR; TRANSMISSION; VACCINATION; INFECTION;
D O I
10.1142/S1793524515500205
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a class of SEIQV epidemic model with general nonlinear incidence rate is investigated. By constructing Lyapunov function, it is shown that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number R-0 <= 1. If R-0 > 1, we show that the endemic equilibrium is globally asymptotically stable by applying Li and Muldowney geometric approach.
引用
收藏
页数:13
相关论文
共 40 条
[11]   Global properties of a class of virus infection models with multitarget cells [J].
Elaiw, A. M. .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :423-435
[12]   Global properties of a class of HIV models [J].
Elaiw, A. M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) :2253-2263
[13]   Global stability of an SEIS epidemic model with recruitment and a varying total population size [J].
Fan, M ;
Li, MY ;
Wang, K .
MATHEMATICAL BIOSCIENCES, 2001, 170 (02) :199-208
[14]  
Gomez-Acevedo H., 2003, Can. Appl. Math. Quatrly, V10, P71
[15]   BIFURCATIONS OF AN SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE [J].
Hu, Zhixing ;
Bi, Ping ;
Ma, Wanbiao ;
Ruan, Shigui .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (01) :93-112
[16]   Global properties for virus dynamics model with Beddington-DeAngelis functional response [J].
Huang, Gang ;
Ma, Wanbiao ;
Takeuchi, Yasuhiro .
APPLIED MATHEMATICS LETTERS, 2009, 22 (11) :1690-1693
[17]   Global dynamics and bifurcation in delayed SIR epidemic model [J].
Kar, T. K. ;
Mondal, Prasanta Kumar .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) :2058-2068
[18]  
Korobeinikov A, 2004, MATH BIOSCI ENG, V1, P57
[20]   Global properties of infectious disease models with nonlinear incidence [J].
Korobeinikov, Andrei .
BULLETIN OF MATHEMATICAL BIOLOGY, 2007, 69 (06) :1871-1886