Global stability of an SEIQV epidemic model with general incidence rate

被引:5
作者
Yang, Yu [1 ]
Zhang, Cuimei [2 ]
Jiang, Xunyan [3 ]
机构
[1] Zhejiang Int Studies Univ, Sch Sci & Technol, Hangzhou 310012, Zhejiang, Peoples R China
[2] Anhui Univ Sci & Technol, Sch Sci, Huainan 232001, Anhui, Peoples R China
[3] Xinyu Univ, Sch Math & Comp Sci, Xinyu 338004, Jiangxi, Peoples R China
关键词
Epidemic model; Lyapunov function; geometric approach; global stability; NONLINEAR INCIDENCE RATE; TOTAL POPULATION-SIZE; GEOMETRIC APPROACH; LYAPUNOV FUNCTION; DYNAMICS; SYSTEMS; SIR; TRANSMISSION; VACCINATION; INFECTION;
D O I
10.1142/S1793524515500205
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a class of SEIQV epidemic model with general nonlinear incidence rate is investigated. By constructing Lyapunov function, it is shown that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number R-0 <= 1. If R-0 > 1, we show that the endemic equilibrium is globally asymptotically stable by applying Li and Muldowney geometric approach.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Globally stable endemicity for infectious diseases with information-related changes in contact patterns [J].
Buonomo, B. ;
d'Onofrio, A. ;
Lacitignola, D. .
APPLIED MATHEMATICS LETTERS, 2012, 25 (07) :1056-1060
[2]   Global stability of an SIR epidemic model with information dependent vaccination [J].
Buonomo, Bruno ;
d'Onofrio, Alberto ;
Lacitignola, Deborah .
MATHEMATICAL BIOSCIENCES, 2008, 216 (01) :9-16
[3]   On the use of the geometric approach to global stability for three dimensional ODE systems: A bilinear case [J].
Buonomo, Bruno ;
Lacitignola, Deborah .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) :255-266
[4]   Global stability for an HIV-1 infection model including an eclipse stage of infected cells [J].
Buonomo, Bruno ;
Vargas-De-Leon, Cruz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) :709-720
[5]   PERSISTENCE IN DYNAMIC-SYSTEMS [J].
BUTLER, G ;
WALTMAN, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 63 (02) :255-263
[6]   Analysis of a SEIV epidemic model with a nonlinear incidence rate [J].
Cai, Li-Ming ;
Li, Xue-Zhi .
APPLIED MATHEMATICAL MODELLING, 2009, 33 (07) :2919-2926
[7]   GENERALIZATION OF THE KERMACK-MCKENDRICK DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V ;
SERIO, G .
MATHEMATICAL BIOSCIENCES, 1978, 42 (1-2) :43-61
[8]   GLOBAL SOLUTION FOR A DIFFUSIVE NON-LINEAR DETERMINISTIC EPIDEMIC MODEL [J].
CAPASSO, V .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (02) :274-284
[9]  
Capasso V., 1993, LECT NOTES BIOMATH, V97
[10]   On the global stability of a generalized cholera epidemiological model [J].
Cheng, Yuanji ;
Wang, Jin ;
Yang, Xiuxiang .
JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) :1088-1104