The Complete Mitochondrial Genome of Entemnotrochus rumphii, a Living Fossil for Vetigastropoda (Mollusca: Gastropoda)

被引:5
作者
Wang, Yunan [1 ,2 ,3 ]
Ma, Peizhen [1 ,4 ]
Zhang, Zhen [1 ,3 ,4 ]
Li, Cui [1 ]
Liu, Yumeng [1 ,3 ,4 ]
Chen, Ya [1 ,3 ]
Wang, Jiahui [1 ]
Wang, Haiyan [1 ,2 ,3 ,4 ]
Song, Hao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, 7 Nanhai Rd, Qingdao 266071, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Ecol & Environm Sci & Marine Biol & Bi, Qingdao 266237, Peoples R China
[3] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 101400, Peoples R China
[4] Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China
基金
美国国家科学基金会;
关键词
Entemnotrochus rumphii; mitochondrial genome; phylogenetic analysis; Vetigastropoda; TRNASCAN-SE; PHYLOGENY; MITOGENOMICS;
D O I
10.3390/genes13112061
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Pleurotomarioidea represents a truly isolated and basally diverging lineage in Vetigastropoda (Mollusca: Gastropoda) whose fossil record can date back to the late Cambrian, thus providing rare insights into the evolutionary history of molluscs. Here, we sequenced and assembled the complete mitochondrial genome of one representative species from Pleurotomarioidea-Entemnotrochus rumphii (Schepman, 1879)-of which the mitogenome is 15,795 bp in length, including 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The nucleotide composition was biased toward AT, and A + T content reached 65.2%. E. rumphii was recovered as sister to all other living vetigastropods according to mitogenome-based phylogenetic analysis. The mitochondrial gene order was consistent with major vetigastropods and the hypothetical ancestral gastropoda, suggesting the deep conservation of mitogenome arrangement in Vetigastropoda.
引用
收藏
页数:11
相关论文
共 34 条
  • [1] Anseeuw Patrick, 1996, P1
  • [2] SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing
    Bankevich, Anton
    Nurk, Sergey
    Antipov, Dmitry
    Gurevich, Alexey A.
    Dvorkin, Mikhail
    Kulikov, Alexander S.
    Lesin, Valery M.
    Nikolenko, Sergey I.
    Son Pham
    Prjibelski, Andrey D.
    Pyshkin, Alexey V.
    Sirotkin, Alexander V.
    Vyahhi, Nikolay
    Tesler, Glenn
    Alekseyev, Max A.
    Pevzner, Pavel A.
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) : 455 - 477
  • [3] Bioinformatics methods for the comparative analysis of metazoan mitochondrial genome sequences
    Bernt, Matthias
    Braband, Anke
    Middendorf, Martin
    Misof, Bernhard
    Rota-Stabelli, Omar
    Stadler, Peter F.
    [J]. MOLECULAR PHYLOGENETICS AND EVOLUTION, 2013, 69 (02) : 320 - 327
  • [4] GASTROPOD PHYLOGENY AND SYSTEMATICS
    BIELER, R
    [J]. ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1992, 23 : 311 - 338
  • [5] Animal mitochondrial genomes
    Boore, JL
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (08) : 1767 - 1780
  • [6] BOSS K.J., 1982, Synopsis and classification of living organisms, V1, P1092
  • [7] Cox L R., 1960, J. Molluscan Stud, V615, P239, DOI 10.1093/oxfordjournals.mollus.a064829
  • [8] Investigating Sources of Conflict in Deep Phylogenomics of Vetigastropod Snails
    Cunha, Tauana Junqueira
    Reimer, James Davis
    Giribet, Gonzalo
    [J]. SYSTEMATIC BIOLOGY, 2022, 71 (04) : 1009 - 1022
  • [9] PLATYHELMINTH MITOCHONDRIAL-DNA - EVIDENCE FOR EARLY EVOLUTIONARY ORIGIN OF A TRANSFER RNASERAGN THAT CONTAINS A DIHYDROURIDINE ARM REPLACEMENT LOOP, AND OF SERINE-SPECIFYING AGA AND AGG CODONS
    GAREY, JR
    WOLSTENHOLME, DR
    [J]. JOURNAL OF MOLECULAR EVOLUTION, 1989, 28 (05) : 374 - 387
  • [10] Graham A., 1985, P151