EVCsiNet: Eigenvector-Based CSI Feedback Under 3GPP Link-Level Channels

被引:21
作者
Liu, Wendong [1 ]
Tian, Wenqiang [1 ]
Xiao, Han [1 ]
Jin, Shi [2 ]
Liu, Xiaofeng [3 ]
Shen, Jia [1 ]
机构
[1] OPPO, Dept Stand Res, Beijing 100026, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[3] China Acad Informat & Commun Technol, Mobile Commun Innovat Ctr, Beijing 100191, Peoples R China
关键词
Decoding; 3GPP; Downlink; Channel models; 5G mobile communication; Training; Quantization (signal); CSI feedback; deep learning; eigenvector; 3GPP channel;
D O I
10.1109/LWC.2021.3112747
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, deep learning based methods have been widely used for wireless communications. In this letter, different from current researches considering full channel state information (F-CSI) feedback, the eigenvector based CSI feedback with deep learning approach is proposed, referred to as EVCsiNet, where the joint eigenvector concatenated from multiple subbands is compressed and recovered at the encoder and decoder, respectively. Simulation results verify the superiority of our schemes over CSI recovery accuracy and feedback overhead compared with conventional methods using codebooks on link-level channel models in different scenarios.
引用
收藏
页码:2688 / 2692
页数:5
相关论文
共 10 条
  • [1] 3GPP, 2020, 38214 3GPP NR
  • [2] [Anonymous], 2020, 38901V1610 3GPP TR
  • [3] Cheng T. S., 2019, 2019 Compound Semiconductor Week (CSW), DOI 10.1109/ICIPRM.2019.8819142
  • [4] Guo Jiajia, 2020, [Journal of Communications and Information Networks, 通信与信息网络学报], V5, P310
  • [5] Guo JJ, 2020, IEEE T WIREL COMMUN, V19, P2827, DOI [10.1109/TNSE.2020.2997359, 10.1109/TWC.2020.2968430]
  • [6] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [7] MIMO Channel Information Feedback Using Deep Recurrent Network
    Lu, Chao
    Xu, Wei
    Shen, Hong
    Zhu, Jun
    Wang, Kezhi
    [J]. IEEE COMMUNICATIONS LETTERS, 2019, 23 (01) : 188 - 191
  • [8] Deep Learning for Wireless Physical Layer: Opportunities and Challenges
    Wang, Tianqi
    Wen, Chao-Kai
    Wang, Hanqing
    Gao, Feifei
    Jiang, Tao
    Jin, Shi
    [J]. CHINA COMMUNICATIONS, 2017, 14 (11) : 92 - 111
  • [9] Deep Learning for Massive MIMO CSI Feedback
    Wen, Chao-Kai
    Shih, Wan-Ting
    Jin, Shi
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) : 748 - 751
  • [10] Xiao H., 2021, ENLIGHTENS WIRELESS