Relative Fourier transforms and expectations on coideal subalgebras

被引:4
作者
Chirvasitu, Alexandru [1 ]
机构
[1] SUNY Buffalo, Buffalo, NY 14260 USA
关键词
Compact quantum group; Coideal subalgebra; Quotient coalgebra; *-coalgebra; Fourier transform; Tannaka reconstruction; Faithfully flat; Faithfully coflat; COMPACT QUANTUM GROUPS; HOPF-ALGEBRAS; IDEMPOTENT STATES; FAITHFUL FLATNESS; FREENESS;
D O I
10.1016/j.jalgebra.2018.08.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an algebraic compact quantum group H we establish a bijection between the set of right coideal *-subalgebras A -> H and that of left module quotient *-coalgebras H -> C. It turns out that the inclusion A -> H always splits as a map of right A-modules and right H-comodules, and the resulting expectation E: H -> A is positive (and lifts to a positive map on the full C* completion on H) if and only if A is invariant under the squared antipode of H. The proof proceeds by Tannaka-reconstructing the coalgebra C corresponding to A -> H by means of a fiber functor from H-equivariant A-modules to Hilbert spaces, while the characterization of those A -> H which admit positive expectations makes use of a Fourier transform turning elements of H into functions on C. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:271 / 297
页数:27
相关论文
共 30 条
[1]  
Abella A., 2009, SAO PAULO J MATH SCI, V3, P193
[2]  
Adamek J., 1994, London Math. Soc. Lecture Note Ser., V189
[3]  
[Anonymous], 1990, Fourier analysis on groups
[4]   The Karoubi envelope and Lee's degeneration of Khovanov homology [J].
Bar-Natan, Dror ;
Morrison, Scott .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 :1459-1469
[5]  
Bodo Pareigis, LECT QUANTUM GROUPS
[6]   Cosemisimple Hopf algebras are faithfully flat over Hopf subalgebras [J].
Chirvasitu, Alexandru .
ALGEBRA & NUMBER THEORY, 2014, 8 (05) :1179-1199
[7]   CQG ALGEBRAS - A DIRECT ALGEBRAIC APPROACH TO COMPACT QUANTUM GROUPS [J].
DIJKHUIZEN, MS ;
KOORNWINDER, TH .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (04) :315-330
[8]   Idempotent states on compact quantum groups and their classification on Uq(2), SUq(2), and SOq(3) [J].
Franz, Uwe ;
Skalski, Adam ;
Tomatsu, Reiji .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (01) :221-254
[9]   A new characterisation of idempotent states on finite and compact quantum groups [J].
Franz, Uwe ;
Skalski, Adam .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (17-18) :991-996
[10]   On idempotent states on quantum groups [J].
Franz, Uwe ;
Skalski, Adam .
JOURNAL OF ALGEBRA, 2009, 322 (05) :1774-1802