ESTIMATION ACCURACY OF NON-STANDARD MAXIMUM LIKELIHOOD ESTIMATORS

被引:0
作者
Kbayer, N. [1 ]
Galy, J. [2 ]
Chaumette, E. [3 ]
Vincent, F. [3 ]
Renaux, A. [4 ]
Larzabal, P. [5 ]
机构
[1] Univ Toulouse, Tesa, Isae, Supaero, 7 Blvd Gare, Toulouse, France
[2] Univ Montpellier 2, LIRMM, 161 Rue Ada, Montpellier, France
[3] Univ Toulouse, Isae, Supaero, 10 Av Edouard Belin, Toulouse, France
[4] Univ Paris Sud, LSS, 3 Rue Joliot Curie, Gif Sur Yvette, France
[5] Univ Paris Sud, SATIE, 61 Av President Wilson, Cachan, France
来源
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2017年
关键词
Deterministic parameter estimation; maximum likelihood estimators; estimation error lower bounds; PARAMETER-ESTIMATION; BOUNDS; PERFORMANCE; VECTOR; ERROR;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In many deterministic estimation problems, the probability density function (p.d.f.) parameterized by unknown deterministic parameters results from the marginalization of a joint p.d.f. depending on additional random variables. Unfortunately, this marginalization is often mathematically intractable, which prevents from using standard maximum likelihood estimators (MLEs) or any standard lower bound on their mean squared error (MSE). To circumvent this problem, the use of joint MLEs of deterministic and random parameters are proposed as being a substitute. It is shown that, regarding the deterministic parameters: 1) the joint MLEs provide generally suboptimal estimates in any asymptotic regions of operation yielding unbiased efficient estimates, 2) any representative of the two general classes of lower bounds, respectively the Small-Error bounds and the Large-Error bounds, has a "non-standard" version lower bounding the MSE of the deterministic parameters estimate.
引用
收藏
页码:4461 / 4465
页数:5
相关论文
共 39 条
[1]   A BOUND ON MEAN-SQUARE-ESTIMATE ERROR [J].
ABEL, JS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (05) :1675-1680
[2]  
[Anonymous], 2007, Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, DOI [DOI 10.1109/9780470544198.CH39, 10.1109/9780470544198.ch39]
[3]   LOCALLY BEST UNBIASED ESTIMATES [J].
BARANKIN, EW .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (04) :477-501
[4]  
Bhattacharyya A, 1946, SANKHYA, V8, P1
[5]   NECESSARY AND SUFFICIENT CONDITIONS FOR INEQUALITIES OF CRAMER-RAO TYPE [J].
BLYTH, CR .
ANNALS OF STATISTICS, 1974, 2 (03) :464-473
[6]   MINIMUM VARIANCE ESTIMATION WITHOUT REGULARITY ASSUMPTIONS [J].
CHAPMAN, DG ;
ROBBINS, H .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (04) :581-586
[7]   A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators [J].
Chaumette, Eric ;
Galy, Jerome ;
Quinlan, Angela ;
Larzabal, Pascal .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (11) :5319-5333
[8]  
Cramer, 1999, MATH METHODS STAT
[9]  
Darmois G., 1945, Revue de l'Institut International de Statistique, V13, P9, DOI DOI 10.2307/1400974
[10]  
Fisher R.A., 1912, Messenger of Mathematics, V41, P155