Recovery of integrable functions and trigonometric series

被引:0
作者
Plotnikov, M. G. [1 ,2 ,3 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow, Russia
[3] Vologda State Univ, Vologda, Russia
基金
俄罗斯基础研究基金会;
关键词
trigonometric series; Fourier series; recovery problem; V-set;
D O I
10.1070/SM9459
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Classes Gamma of L-1-functions with fixed rate of decrease of their Fourier coefficients are considered. For each class Gamma, it is shown that there exists a (recovery) set G with arbitrarily small measure such that any function in Gamma can be recovered from its values on G. A formula for evaluation of the Fourier coefficients of such a function from its values on G is given. In addition, it is shown that, for any L-1-function, a function-specific recovery set can be found. The problem of recovery of general trigonometric series from the Zygmund classes which converge to summable functions on such sets G is also solved.
引用
收藏
页码:843 / 858
页数:16
相关论文
共 10 条
[1]  
Babenko V.F., 2014, ARXIV14030840
[2]  
Bary N. K., 1961, TREATISE TRIGONOMETR
[3]  
[Боянов Борислав Дечев Boyanov Borislav Dechev], 2005, [Успехи математических наук, Russian Mathematical Surveys, Uspekhi matematicheskikh nauk], V60, P33, DOI 10.4213/rm1675
[4]  
Daubechies I., 1992, CBMS NSF REGIONAL C, DOI [DOI 10.1137/1.9781611970104, 10.1137/1.9781611970104]
[5]  
Kahane J.-P., 1973, C R ACAD SCI PARIS A, V277, pA893
[6]  
Kechris A.S., 1987, LONDON MATH SOC LECT, V128, DOI [10.1017/CBO9780511758850, DOI 10.1017/CBO9780511758850]
[7]  
Natanson IP., 1999, Theory of Functions of a Real Variable
[8]  
Smolyak S.A., 1965, THESIS STATE U
[9]   The Marcinkiewicz-Type Discretization Theorems [J].
Temlyakov, V. N. .
CONSTRUCTIVE APPROXIMATION, 2018, 48 (02) :337-369
[10]  
Zygmund A, 2002, Trigonometric series, V1