On the number of limit cycles for perturbed pendulum equations

被引:25
作者
Gasull, A. [1 ]
Geyer, A. [2 ]
Manosas, F. [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Vienna, Fac Math, Nordbergstr 15, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Limit cycles; Perturbed pendulum equation; Infinitesimal Sixteenth Hilbert problem; Abelian integrals; HILBERTS 16TH PROBLEM; ABELIAN-INTEGRALS; JOSEPHSON-EQUATION; BIFURCATIONS; PROPERTY; MODEL; ZEROS;
D O I
10.1016/j.jde.2016.04.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider perturbed pendulum-like equations on the cylinder of the form (x) over dot + sin(x) = epsilon Sigma(m)(s=0) Q(n,s) (x) over dot(s) is where Q(n,s) are trigonometric polynomials of degree n, and study the number of limit cycles that bifurcate from the periodic orbits of the unperturbed case epsilon = 0 in terms of m and n. Our first result gives upper bounds on the number of zeros of its associated first order Melnikov function, in both the oscillatory and the rotary regions. These upper bounds are obtained expressing the corresponding Abelian integrals in terms of polynomials and the complete elliptic functions of first and second kind. Some further results give sharp bounds on the number of zeros of these integrals by identifying subfamilies which are shown to be Chebyshev systems. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:2141 / 2167
页数:27
相关论文
共 21 条
[1]   SHUNTED-JOSEPHSON-JUNCTION MODEL .1. AUTONOMOUS CASE [J].
BELYKH, VN ;
PEDERSEN, NF ;
SOERENSEN, OH .
PHYSICAL REVIEW B, 1977, 16 (11) :4853-4859
[2]  
Binyamini G, 2010, INVENT MATH, V181, P227, DOI 10.1007/s00222-010-0244-0
[3]  
Byrd P., 1971, Grundlehren der mathematischen Wissenschaften
[4]  
CHENCINER A, 1987, CR ACAD SCI I-MATH, V305, P623
[5]   Simultaneous bifurcation of limit cycles from two nests of periodic orbits [J].
Garijo, Antonio ;
Gasull, Arrnengol ;
Jarque, Xavier .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :813-824
[6]   Chebyshev property of complete elliptic integrals and its application to Abelian integrals [J].
Gasull, A ;
Li, WG ;
Llibre, J ;
Zhang, ZF .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 202 (02) :341-361
[7]   A new Chebyshev family with applications to Abel equations [J].
Gasull, Annengol ;
Li, Chengzhi ;
Torregrosa, Joan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1635-1641
[8]   A CHEBYSHEV CRITERION FOR ABELIAN INTEGRALS [J].
Grau, M. ;
Manosas, F. ;
Villadelprat, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (01) :109-129
[9]   Higher order bifurcations of limit cycles [J].
Iliev, ID ;
Perko, LM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (02) :339-363
[10]   Centennial history of Hilbert's 16th problem [J].
Ilyashenko, Y .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) :301-354