Blind Image Denoising Using Low Rank Matrix Minimization

被引:0
作者
Prasetyo, Heri [1 ]
Hsia, Chih-Hsien [2 ]
机构
[1] Univ Sebelas Maret, Dept Informat, Surakarta, Indonesia
[2] Natl Ilan Univ, Dept Comp Sci & Informat Engn, Yilan, Taiwan
来源
2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW) | 2018年
关键词
DOMAIN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a simple approach for blind image denoising on Low Rank Matrix Minimization (LRMM). The LRMM has been shown to achieve a great success on Additive White Gaussian Noise (AWGN) image denoising. However, the LRMM requires information about noise level before performing the denoising task. This paper modifies the LRMM approach into blind denoising environment in which the noise level is directly estimated from a noisy image. Thus, the denoising process can be effectively performed. As documented in experimental section, the proposed method yields a promising result on blind image denoising.
引用
收藏
页数:2
相关论文
共 50 条
[21]   Image Denoising Using Sparse Representation and Principal Component Analysis [J].
Abedini, Maryam ;
Haddad, Horriyeh ;
Masouleh, Marzieh Faridi ;
Shahbahrami, Asadollah .
INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2022, 22 (04)
[22]   Ontology Mapping Constructing by means of Low Rank Distance Matrix Optimization [J].
Qiu, Caihua .
ENGINEERING LETTERS, 2020, 28 (03) :724-732
[23]   Separation-based model for low-dose CT image denoising [J].
Chen, Wenbin ;
Bai, Junjie ;
Gu, Xiaohua ;
Li, Yuyan ;
Shao, Yanling ;
Zhang, Quan ;
Liu, Yi ;
Liu, Yanli ;
Gui, Zhiguo .
JOURNAL OF ENGINEERING-JOE, 2020, 2020 (12) :1198-1208
[24]   A Novel Total Variation Model for Low-Dose CT Image Denoising [J].
Chen, Wenbin ;
Shao, Yanling ;
Wang, Yanling ;
Zhang, Quan ;
Liu, Yi ;
Yao, Linhong ;
Chen, Yan ;
Yang, Guanru ;
Gui, Zhiguo .
IEEE ACCESS, 2018, 6 :78892-78903
[25]   Blind color image watermarking incorporating a residual network for watermark denoising and super-resolution reconstruction [J].
Hu, Hwai-Tsu ;
Hsu, Ling-Yuan .
SOFT COMPUTING, 2023, 27 (02) :917-934
[26]   Gradient-based low rank method and its application in image inpainting [J].
Lu, Hongyang ;
Liu, Qiegen ;
Zhang, Minghui ;
Wang, Yuhao ;
Deng, Xiaohua .
MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (05) :5969-5993
[27]   MR Image Denoising and Super-Resolution Using Regularized Reverse Diffusion [J].
Chung, Hyungjin ;
Lee, Eun Sun ;
Ye, Jong Chul .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (04) :922-934
[28]   Ultrasound Medical Image Denoising Using Threshold Based Wavelet Transformation Method [J].
Kumar, C. ;
Prakash, R. .
JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (08) :1825-1830
[29]   Patch based image denoising using the finite ridgelet transform for less artifacts [J].
Liu, Yun-Xia ;
Law, Ngai-Fong ;
Siu, Wan Chi .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (05) :1006-1017
[30]   Edge-preserving image denoising using a deep convolutional neural network [J].
Shandoosti, Hamid Reza ;
Rahemi, Zahra .
SIGNAL PROCESSING, 2019, 159 :20-32