Blind Image Denoising Using Low Rank Matrix Minimization

被引:0
作者
Prasetyo, Heri [1 ]
Hsia, Chih-Hsien [2 ]
机构
[1] Univ Sebelas Maret, Dept Informat, Surakarta, Indonesia
[2] Natl Ilan Univ, Dept Comp Sci & Informat Engn, Yilan, Taiwan
来源
2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW) | 2018年
关键词
DOMAIN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a simple approach for blind image denoising on Low Rank Matrix Minimization (LRMM). The LRMM has been shown to achieve a great success on Additive White Gaussian Noise (AWGN) image denoising. However, the LRMM requires information about noise level before performing the denoising task. This paper modifies the LRMM approach into blind denoising environment in which the noise level is directly estimated from a noisy image. Thus, the denoising process can be effectively performed. As documented in experimental section, the proposed method yields a promising result on blind image denoising.
引用
收藏
页数:2
相关论文
共 50 条
[1]   Blind Color Image Denoising Using Low Rank Matrix Minimization [J].
Prasetyo, Heri ;
Salamah, Umi ;
Wiranto ;
Sihwi, Sari Widya ;
Winarno .
2019 5TH INTERNATIONAL CONFERENCE ON SCIENCE ININFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0 - TOWARDS INNOVATION IN CYBER PHYSICAL SYSTEM, 2019, :55-59
[2]   The Rank Residual Constraint Model with Weighted Schatten p-Norm Minimization for Image Denoising [J].
Zhang, Tao ;
Wu, Di ;
Mo, Xutao .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (08) :4740-4758
[3]   Image denoising using weighted nuclear norm minimization with multiple strategies [J].
Liu, Xiaohua ;
Jing, Xiao-Yuan ;
Tang, Guijin ;
Wu, Fei ;
Ge, Qi .
SIGNAL PROCESSING, 2017, 135 :239-252
[4]   Intracluster Structured Low-Rank Matrix Analysis Method for Hyperspectral Denoising [J].
Wei, Wei ;
Zhang, Lei ;
Jiao, Yining ;
Tian, Chunna ;
Wang, Cong ;
Zhang, Yanning .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02) :866-880
[5]   Adaptive Boosting for Image Denoising: Beyond Low-Rank Representation and Sparse Coding [J].
Wang, Bo ;
Lu, Tao ;
Xiong, Zixiang .
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, :1400-1405
[6]   Enhanced low-rank matrix estimation for simultaneous denoising and reconstruction of 5D seismic data [J].
Oboue, Yapo Abole Serge Innocent ;
Chen, Yangkang .
GEOPHYSICS, 2021, 86 (05) :V459-V470
[7]   Improved MR image denoising via low- rank approximation and Laplacian-of-Gaussian edge detector [J].
Qiu, Xiaoqun ;
Chen, Zhen ;
Adnan, Saifullah ;
He, Hongwei .
IET IMAGE PROCESSING, 2020, 14 (12) :2791-2798
[8]   A novel blind color image watermarking using upper Hessenberg matrix [J].
Su, Qingtang ;
Chen, Beijing .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 78 :64-71
[9]   A Novel 3D Anisotropic Total Variation Regularized Low Rank Method for Hyperspectral Image Mixed Denoising [J].
Sun, Le ;
Zhan, Tianming ;
Wu, Zebin ;
Jeon, Byeungwoo .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (10)
[10]   Multi-weighted nuclear norm minimization for real world image denoising [J].
Guo, Xue ;
Liu, Feng ;
Yao, Jie ;
Chen, Yiting ;
Tian, Xuetao .
OPTIK, 2020, 206