Blind Image Denoising Using Low Rank Matrix Minimization

被引:0
|
作者
Prasetyo, Heri [1 ]
Hsia, Chih-Hsien [2 ]
机构
[1] Univ Sebelas Maret, Dept Informat, Surakarta, Indonesia
[2] Natl Ilan Univ, Dept Comp Sci & Informat Engn, Yilan, Taiwan
来源
2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW) | 2018年
关键词
DOMAIN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a simple approach for blind image denoising on Low Rank Matrix Minimization (LRMM). The LRMM has been shown to achieve a great success on Additive White Gaussian Noise (AWGN) image denoising. However, the LRMM requires information about noise level before performing the denoising task. This paper modifies the LRMM approach into blind denoising environment in which the noise level is directly estimated from a noisy image. Thus, the denoising process can be effectively performed. As documented in experimental section, the proposed method yields a promising result on blind image denoising.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Blind Color Image Denoising Using Low Rank Matrix Minimization
    Prasetyo, Heri
    Salamah, Umi
    Wiranto
    Sihwi, Sari Widya
    Winarno
    2019 5TH INTERNATIONAL CONFERENCE ON SCIENCE ININFORMATION TECHNOLOGY (ICSITECH): EMBRACING INDUSTRY 4.0 - TOWARDS INNOVATION IN CYBER PHYSICAL SYSTEM, 2019, : 55 - 59
  • [2] Denoising of Hyperspectral Image Using Low-Rank Matrix Factorization
    Xu, Fei
    Chen, Yongyong
    Peng, Chong
    Wang, Yongli
    Liu, Xuefeng
    He, Guoping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1141 - 1145
  • [3] Gaussian Patch Mixture Model Guided Low-Rank Covariance Matrix Minimization for Image Denoising*
    Guo, Jing
    Guo, Yu
    Jin, Qiyu
    Ng, Michael Kwok-Po
    Wang, Shuping
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (04): : 1601 - 1622
  • [4] Image Denoising Using Low Rank Matrix Approximation in Singular Value Decomposition
    Tallapragada, V. V. Satyanarayana
    Kumar, G. V. Pradeep
    Reddy, D. Venkat
    Narasihimhaprasad, K. L.
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 1430 - 1446
  • [5] Image Denoising Using Adaptive Weighted Low-Rank Matrix Recovery
    Wang, Yujuan
    Quo, Yun
    Wang, Ping
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (04):
  • [6] Hyperspectral image denoising with bilinear low rank matrix factorization
    Fan, Huixin
    Li, Jie
    Yuan, Qiangqiang
    Liu, Xinxin
    Ng, Michael
    SIGNAL PROCESSING, 2019, 163 : 132 - 152
  • [7] HYPERSPECTRAL IMAGE DENOISING WITH MULTISCALE LOW-RANK MATRIX RECOVERY
    Huang, Zhihong
    Li, Shutao
    Hu, Fang
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5442 - 5445
  • [8] Hyperspectral image denoising via low-rank matrix recovery
    Song, Huihui
    Wang, Guojie
    Zhang, Kaihua
    REMOTE SENSING LETTERS, 2014, 5 (10) : 872 - 881
  • [9] A Vessel Trajectory Reconstruction Method Based on Low-rank Minimization Matrix Denoising
    Liu, Wen
    Wang, Wen-Bo
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (01): : 106 - 114
  • [10] A note on patch-based low-rank minimization for fast image denoising
    Hu, Haijuan
    Froment, Jacques
    Liu, Quansheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 50 : 100 - 110