Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response

被引:241
作者
Hu, Fei-Fei [1 ,2 ]
Liu, Chun-Jie [2 ]
Liu, Lan-Lan [2 ]
Zhang, Qiong [2 ]
Guo, An-Yuan [2 ]
机构
[1] Wuhan Univ Sci & Technol, Wuhan, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
immune checkpoints; expression profile; immunotherapy response; survival analysis; ANTI-PD-L1; ANTIBODY; CANCER; BLOCKADE; PATHWAY; RESOURCE; SAFETY; CTLA-4; ATLAS;
D O I
10.1093/bib/bbaa176
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Immune checkpoint genes (ICGs) play critical roles in circumventing self-reactivity and represent a novel target to develop treatments for cancers. However, a comprehensive analysis for the expression profile of ICGs at a pan-cancer level and their correlation with patient response to immune checkpoint blockade (ICB) based therapy is still lacking. In this study, we defined three expression patterns of ICGs using a comprehensive survey of RNA-seq data of tumor and immune cells from the functional annotation of the mammalian genome (FANTOM5) project. The correlation between the expression patterns of ICGs and patients survival and response to ICB therapy was investigated. The expression patterns of ICGs were robust across cancers, and upregulation of ICGs was positively correlated with high lymphocyte infiltration and good prognosis. Furthermore, we built a model (ICGe) to predict the response of patients to ICB therapy using five features of ICG expression. A validation scenario of six independent datasets containing data of 261 patients with CTLA-4 and PD-1 blockade immunotherapies demonstrated that ICGe achieved area under the curves of 0.64-0.82 and showed a robust performance and outperformed other mRNA-based predictors. In conclusion, this work revealed expression patterns of ICGs and underlying correlations between ICGs and response to ICB, which helps to understand the mechanisms of ICGs in ICB signal pathways and other anticancer treatments.
引用
收藏
页数:12
相关论文
共 56 条
[1]   Data Descriptor: FANTOM5 CAGE profiles of human and mouse reprocessed for GRCh38 and GRCm38 genome assemblies [J].
Abugessaisa, Imad ;
Noguchi, Shuhei ;
Hasegawa, Akira ;
Harshbarger, Jayson ;
Kondo, Atsushi ;
Lizio, Marina ;
Severin, Jessica ;
Carninci, Piero ;
Kawaji, Hideya ;
Kasukawa, Takeya .
SCIENTIFIC DATA, 2017, 4
[2]   The butyrophilin (BTN) gene family: from milk fat to the regulation of the immune response [J].
Afrache, Hassnae ;
Gouret, Philippe ;
Ainouche, Shanaiz ;
Pontarotti, Pierre ;
Olive, Daniel .
IMMUNOGENETICS, 2012, 64 (11) :781-794
[3]   EP4 Antagonism by E7046 diminishes Myeloid immunosuppression and synergizes with Treg-reducing IL-2-Diphtheria toxin fusion protein in restoring anti-tumor immunity [J].
Albu, Diana I. ;
Wang, Zichun ;
Huang, Kuan-Chun ;
Wu, Jiayi ;
Twine, Natalie ;
Leacu, Sarah ;
Ingersoll, Christy ;
Parent, Lana ;
Lee, Winnie ;
Liu, Diana ;
Wright-Michaud, Renee ;
Kumar, Namita ;
Kuznetsov, Galina ;
Chen, Qian ;
Zheng, Wanjun ;
Nomoto, Kenichi ;
Woodall-Jappe, Mary ;
Bao, Xingfeng .
ONCOIMMUNOLOGY, 2017, 6 (08)
[4]   LAG3 (CD223) as a cancer immunotherapy target [J].
Andrews, Lawrence P. ;
Marciscano, Ariel E. ;
Drake, Charles G. ;
Vignali, Dario A. A. .
IMMUNOLOGICAL REVIEWS, 2017, 276 (01) :80-96
[5]   Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma [J].
Auslander, Noam ;
Zhang, Gao ;
Lee, Joo Sang ;
Frederick, Dennie T. ;
Miao, Benchun ;
Moll, Tabea ;
Tian, Tian ;
Wei, Zhi ;
Madan, Sanna ;
Sullivan, Ryan J. ;
Boland, Genevieve ;
Flaherty, Keith ;
Herlyn, Meenhard ;
Ruppin, Eytan .
NATURE MEDICINE, 2018, 24 (10) :1545-+
[6]   IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade [J].
Ayers, Mark ;
Lunceford, Jared ;
Nebozhyn, Michael ;
Murphy, Erin ;
Loboda, Andrey ;
Kaufman, David R. ;
Albright, Andrew ;
Cheng, Jonathan D. ;
Kang, S. Peter ;
Shankaran, Veena ;
Piha-Paul, Sarina A. ;
Yearley, Jennifer ;
Seiwert, Tanguy Y. ;
Ribas, Antoni ;
McClanahan, Terrill K. .
JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (08) :2930-2940
[7]   Immune Escape Mechanisms as a Guide for Cancer Immunotherapy [J].
Beatty, Gregory L. ;
Gladney, Whitney L. .
CLINICAL CANCER RESEARCH, 2015, 21 (04) :687-692
[8]   Safety and Activity of Anti-PD-L1 Antibody in Patients with Advanced Cancer [J].
Brahmer, Julie R. ;
Tykodi, Scott S. ;
Chow, Laura Q. M. ;
Hwu, Wen-Jen ;
Topalian, Suzanne L. ;
Hwu, Patrick ;
Drake, Charles G. ;
Camacho, Luis H. ;
Kauh, John ;
Odunsi, Kunle ;
Pitot, Henry C. ;
Hamid, Omid ;
Bhatia, Shailender ;
Martins, Renato ;
Eaton, Keith ;
Chen, Shuming ;
Salay, Theresa M. ;
Alaparthy, Suresh ;
Grosso, Joseph F. ;
Korman, Alan J. ;
Parker, Susan M. ;
Agrawal, Shruti ;
Goldberg, Stacie M. ;
Pardoll, Drew M. ;
Gupta, Ashok ;
Wigginton, Jon M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2012, 366 (26) :2455-2465
[9]   Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations [J].
Campbell, Kerry S. ;
Purdy, Amanda K. .
IMMUNOLOGY, 2011, 132 (03) :315-325
[10]   Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response [J].
Chen, Gang ;
Huang, Alexander C. ;
Zhang, Wei ;
Zhang, Gao ;
Wu, Min ;
Xu, Wei ;
Yu, Zili ;
Yang, Jiegang ;
Wang, Beike ;
Sun, Honghong ;
Xia, Houfu ;
Man, Qiwen ;
Zhong, Wenqun ;
Antelo, Leonardo F. ;
Wu, Bin ;
Xiong, Xuepeng ;
Liu, Xiaoming ;
Guan, Lei ;
Li, Ting ;
Liu, Shujing ;
Yang, Ruifeng ;
Lu, Youtao ;
Dong, Liyun ;
McGettigan, Suzanne ;
Somasundaram, Rajasekharan ;
Radhakrishnan, Ravi ;
Mills, Gordon ;
Lu, Yiling ;
Kim, Junhyong ;
Chen, Youhai H. ;
Dong, Haidong ;
Zhao, Yifang ;
Karakousis, Giorgos C. ;
Mitchell, Tara C. ;
Schuchter, Lynn M. ;
Herlyn, Meenhard ;
Wherry, E. John ;
Xu, Xiaowei ;
Guo, Wei .
NATURE, 2018, 560 (7718) :382-+