Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential

被引:4
作者
He, Cheng-Jun [1 ]
Xiang, Chang-Lin [2 ]
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, POB 71010, Wuhan 430071, Peoples R China
[2] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Quasilinear elliptic equations; Hardy's inequality; Asymptotic behaviors; Comparison principle; SCALAR FIELD-EQUATIONS; EXISTENCE;
D O I
10.1016/j.jmaa.2016.03.082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations -Delta(p)u - mu/vertical bar x vertical bar(p)vertical bar u vertical bar(p-2)u + m vertical bar u vertical bar(p-2) u = f(u), x is an element of RN, where 1 < p < N, 0 <= mu < ((N - p)/p)(p) , m > 0 and f is a continuous function. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:211 / 234
页数:24
相关论文
共 10 条
[1]  
Abdellaoui B., 2006, Boll. UMI, V9-B, P445
[2]  
[Anonymous], 1989, GRAD TEXTS MATH
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]   ASYMPTOTIC BEHAVIOR OF THE POSITIVE SOLUTIONS FOR AN ELLIPTIC EQUATION WITH HARDY TERM [J].
Deng, Yinbin ;
Gao, Qi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (02) :367-380
[5]  
Gidas B., 1981, Math. Anal. Appl., V7A, P369
[6]   SOME PROPERTIES OF WEAK SOLUTIONS OF NONLINEAR SCALAR FIELD-EQUATIONS [J].
LI, GB .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE SERIES A1-MATHEMATICA, 1990, 15 (01) :27-36
[7]   Note on exponential decay properties of ground states for quasilinear elliptic equations [J].
Li, Y ;
Zhao, CS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) :2005-2012
[8]   SYMMETRY AND COMPACTNESS IN SOBOLEV SPACES [J].
LIONS, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (03) :315-334
[9]   EXISTENCE OF SOLITARY WAVES IN HIGHER DIMENSIONS [J].
STRAUSS, WA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 55 (02) :149-162
[10]   Asymptotic behaviors of solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential [J].
Xiang, Chang-Lin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3929-3954